IP gateway IP305

Administrator Manual

innovaphone Pure IP Telephony

Brand names are used with no guarantee that they may be freely employed. Almost all hardware and software designations in this manual are registered trademarks or should be treated as such.

All rights reserved. No part of this manual may be reproduced in any way (print, photocopy, microfilm or by any other means) or processed, duplicated or distributed using electronic systems without explicit approval.

Texts and illustrations have been compiled and software created with the utmost care, However errors cannot be completely ruled out. This documentation is therefore supplied under exclusion of any liability or warranty of suitability for specific purposes. innovaphone reserves the right to improve or modify this documentation without prior notice.

Copyright © 2001-2007 innovaphone[®] AG

IP gateway IP305

Manual Version 6.0

Release 6.0, 2nd edition, April 2007

PDF version available for download at: http://www.innovaphone.com

Copyright © 2001-2007 innovaphone[®] AG Böblinger Str. 76 71065 Sindelfingen, Germany Phone +49 (7031) 73009-0 | Fax +49 (7031) 73009-99 http://www.innovaphone.com

Safety instructions

The manufacturer assumes no responsibility for any personal injury, damage to property or subsequent damage that can be attributed to improper use of the device.

Power supply

The mains adapter of the device is designed for operation with a 100-240V, 50Hz AC network. Some devices can also be operated using **PoE** (**P**ower **o**ver **E**thernet) in accordance with IEEE 802.3af. No attempt should ever be made to connect the equipment to other mains systems! In the event of power failure, the equipment settings are retained.

Installation and connection

The connection cables should be laid safely so that no one can trip over them. Connected cables must not be bent excessively or subjected to mechanical strain.

The equipment is intended for use in dry rooms only.

- Operating temperature: 0° C to 40° C, 10% to 90% relative humidity, noncondensing.
- Storage temperature: -10° C to 70° C

The equipment must not be installed and operated under the following conditions:

- In damp, dusty, vibrating rooms or in rooms where an explosion may occur.
- At temperatures over 40°C or under 0°C

Malfunctions

There is no need to open the device, if it is used as intended and serviced as specified. But if the device is opened for some reason, it must be ensured that all connection cables have been first removed. Before opening the device, interrupt the power supply by removing the power/Ethernet cable.

Do not open or reconnect faulty equipment. The original packing should be kept safely in case the device needs to be returned, since it provides ideal protection. All entries (for example, on a PC) should be backed up beforehand to avoid losing data.

Disposal

When due for disposal, the device must be returned directly to the manufacturer innovaphone AG in accordance with the WEEE guidelines (**W**aste **E**lectrical and **E**lectronic **E**quipment). The costs for returning the device shall be borne by innovaphone AG.

Table of contents

Safety instructions	4
Table of contents	5
1 Introduction	10
1.1 Good value Media Gateway	10
1.2 ISDN Adapter and Extension	10
1.3 Upgrade to innovaphone PBX	10
1.4 Features	10
2 Initial start-up	11
2.1 Establish administrator access	11
3 User interface	13
3.1 Structure of the user interface	13
3.2 Protected areas	14
3.3 Saving the settings	
4 Configuration and administration	15
4.1 Configuration	15
4.1 Configuration 4.1.1 Configuration/General	
-	15
4.1.1 Configuration/General	 15 15
4.1.1 Configuration/General	 15 15 16
4.1.1 Configuration/General 4.1.1.1 Configuration/General/Info 4.1.1.2 Configuration/General/Admin	15 15 16 16
4.1.1 Configuration/General 4.1.1.1 Configuration/General/Info 4.1.1.2 Configuration/General/Admin 4.1.1.3 Configuration/General/Licence.	15 15 16 16
 4.1.1 Configuration/General 4.1.1.1 Configuration/General/Info 4.1.1.2 Configuration/General/Admin 4.1.1.3 Configuration/General/Licence 4.1.1.4 Configuration/General/Update 	15 15 16 16 18 18
 4.1.1 Configuration/General 4.1.1.1 Configuration/General/Info 4.1.1.2 Configuration/General/Admin 4.1.1.3 Configuration/General/Licence 4.1.1.4 Configuration/General/Update 4.1.1.5 Configuration/General/NTP 	15
 4.1.1 Configuration/General 4.1.1.1 Configuration/General/Info 4.1.1.2 Configuration/General/Admin 4.1.1.3 Configuration/General/Licence 4.1.1.4 Configuration/General/Update 4.1.1.5 Configuration/General/NTP 4.1.1.6 Configuration/General/HTTP Server 	
 4.1.1 Configuration/General 4.1.1.1 Configuration/General/Info 4.1.1.2 Configuration/General/Admin 4.1.1.3 Configuration/General/Licence 4.1.1.4 Configuration/General/Update 4.1.1.5 Configuration/General/NTP 4.1.1.6 Configuration/General/HTTP Server 4.1.1.7 Configuration/General/HTTP Client 	15 16 16 18 18 19 20 20
 4.1.1 Configuration/General 4.1.1.1 Configuration/General/Info 4.1.1.2 Configuration/General/Admin 4.1.1.3 Configuration/General/Licence 4.1.1.4 Configuration/General/Update 4.1.1.5 Configuration/General/NTP 4.1.1.6 Configuration/General/HTTP Server 4.1.1.7 Configuration/General/HTTP Client 4.1.1.8 Configuration/General/Logging 	15 16 16 18 18 19 20 20 22
 4.1.1 Configuration/General 4.1.1.1 Configuration/General/Info 4.1.1.2 Configuration/General/Admin 4.1.1.3 Configuration/General/Licence 4.1.1.4 Configuration/General/Update 4.1.1.5 Configuration/General/NTP 4.1.1.6 Configuration/General/HTTP Server 4.1.1.7 Configuration/General/HTTP Client 4.1.1.8 Configuration/General/Logging 4.1.1.9 Configuration/General/SNMP 	15 15 16 16 18 18 19 20 20 22 22

4.1.2.2 Configuration/IP/NAT	24
4.1.2.3 Configuration/IP/H.323 NAT	25
4.1.2.4 Configuration/IP/PPP Config	25
4.1.2.5 Configuration/IP/PPP State	30
4.1.2.6 Configuration/IP/Routing	30
4.1.3 Configuration/ETH0-1	31
4.1.3.1 Configuration/ETH0-1/Link	31
4.1.3.2 Configuration/ETH0-1/DHCP	31
4.1.3.3 Configuration/ETH0-1/IP	32
4.1.3.4 Configuration/ETH0-1/NAT	33
4.1.3.5 Configuration/ETH0-1/VLAN	33
4.1.3.6 Configuration/ETH0-1/DHCP Server	34
4.1.3.7 Configuration/ETH0-1/DHCP Leases	37
4.1.3.8 Configuration/ETH0-1/Statistics	38
4.1.4 Configuration/LDAP	39
4.1.4.1 Configuration/LDAP/Server	40
4.1.4.2 Configuration/LDAP/Server-Status	40
4.1.4.3 Configuration/LDAP/Replicator	40
4.1.4.4 Configuration/LDAP/Replicator-Status	41
4.1.5 Configuration/BRI1-2	42
4.1.5.1 Configuration/BRI1-2/Physical	42
4.1.5.2 Configuration/BRI1-2/Protocol	44
4.1.5.3 Configuration/BRI1-2/Interop	45
4.1.5.4 Configuration/BRI1-2/State	46
4.1.5.5 Configuration/BRI1-2/Statistics	47
4.2 Administration	47
4.2.1 Administration/PBX	
4.2.1.1 Administration/PBX/General	48
4.2.1.2 Administration/PBX/Password	
	50

	4.2.1.4 Admii	nistration/PBX/Objects	51
	4.2.1.4.1	User Object:	54
	4.2.1.4.2	Boolean Object:	54
	4.2.1.4.3	Call Broadcast Object:	
	4.2.1.4.4	DECT System Object	56
	4.2.1.4.5	DTMF Features Object	
	4.2.1.4.6	Executive Object:	
	4.2.1.4.7 4.2.1.4.8	Gateway Object MCast Announcement Object:	58 50
	4.2.1.4.8	Meast Announcement Object:	
	4.2.1.4.10	Number Map Object:	
	4.2.1.4.11	PBX Object:	
	4.2.1.4.12	Trunk Line Object:	61
	4.2.1.4.13	Voicemail Object:	63
	4.2.1.4.14	Waiting Queue Object:	63
	4.2.1.5 Admii	nistration/PBX/Calls	65
4.	2.2 Administ	ration/Gateway	66
	4.2.2.1 Admii	nistration/Gateway/General	66
	4.2.2.2 Admii	nistration/Gateway/Interfaces	71
	4.2.2.2.1	Interface (ISDN, SIP & virtual interfaces)	71
	4.2.2.2.2	CGPN/CDPN Mappings	78
	4.2.2.3 Admii	nistration/Gateway/VOIP	79
	4.2.2.3.1	Interface (VoIP Interfaces)	79
	4.2.2.3.2	CGPN/CDPN Mappings	82
	4.2.2.4 Admii	nistration/Gateway/Routes	82
	4.2.2.4.1	From - To	83
	4.2.2.4.2	CGPN Maps	86
	4.2.2.5 Admii	nistration/Gateway/CDR0-1	87
	4.2.2.6 Admii	nistration/Gateway/Calls	88
4.		nistration/Gateway/Calls ration/Download	
4.	2.3 Administ		89
	2.3 Administ 4.2.3.1 Admii	ration/Download	89 89
	2.3 Administ 4.2.3.1 Admin 2.4 Administ	ration/Download	89 89 89
	 2.3 Administ 4.2.3.1 Administ 2.4 Administ 4.2.4.1 Administ 	ration/Download nistration/Download/Config ration/Upload	89 89 89 89

4.2.4.3 Administration/Upload/Radio	90
4.2.4.4 Administration/Upload/Boot	91
4.2.5 Administration/Diagnostics	91
4.2.5.1 Administration/Diagnostics/Logging	91
4.2.5.2 Administration/Diagnostics/Tracing	92
4.2.5.3 Administration/Diagnostics/Config Show	
4.2.5.4 Administration/Diagnostics/Ping	
4.2.6 Administration/Reset	95
4.2.6.1 Administration/Idle Reset	95
4.2.6.2 Administration/Reset/Reset	95
4.2.6.3 Administration/Reset/TFTP	95
Appendix A: Connectors and control elements	96
Indicators and connectors	
The serial number label	98
Appendix B: Troubleshooting	99
Typical problems	99
NAT and firewalls	
VoIP and heavily loaded WAN links	
Anhang C: ISDN-Errorcodes	104
Appendix D: Support	
Firmware upload	107
innovaphone homepage	107
Appendix E: Configuration of the update server	
System requirements	
Installation	
Configuration	
Running maintenance	
Maintenance commands	109
Appendix F: Configuration of an NTP server/client	
Timezone strings (TZ string):	114
Appendix G: Instructions for downloading licences	116

Keyword index	
Appendix H: Glossary	
License Manager	
Result	
Download	
Login	116

1 Introduction

This manual describes the innovaphone-Gateway IP305. The IP305 completes the innovaphone gateway product range in the lower segment. Two ISDN connections enable up to 4 simultaneous calls over the trunk line.

1.1 Good value Media Gateway

The IP305 serves up to 4 simultaneous calls to the traditional network on two ISDN lines. Modern DSP technology enables the best voice quality to be reached on a narrow bandwidth. The most important protocols such as SIP, H.323 und T.38 (Fax) are supported making the product very versatile.

1.2 ISDN Adapter and Extension

The gateway can also be used as an ISDN terminal adapter. All ISDN devices can be run on the ISDN connections. A combination of an IP305 to the trunk line and a second box to the terminal thus enables an ISDN extension with practically no limitation in length – through an internet protocol which is common throughout the world.

1.3 Upgrade to innovaphone PBX

All the installations shown previously have always included the possibility to extend to a complete telephone system – simply through uploading the correct license. The upgrade can be done remotely thanks to the web configuration.

1.4 Features

- 2 BRI interfaces, scalable
- NT or TE mode
- Two separate Ethernet interfaces, PoE
- SIP and H.323 simultanously
- Mains adapter, 110-240V, 45mA, or "Power over LAN"
- No rotating parts such as fans or hard disks

Caution

All instructions in this manual should be followed carefully and the device should only be used as intended. The manufacturer assumes no responsibility for any personal injury, damage to property or subsequent damage that can be attributed to improper use of the device.

2 Initial start-up

The device is switched on by connecting the external power supply or through a PoE (Power **o**ver **E**thernet) power supply in accordance with IEEE 802.3af. The device is on and ready if the Ready LED on the housing is lit in green. The device isn't ready if the Ready LED is lit in red. If the Ready LED is lit in orange the device is in tftp mode.

To be able to access the device, the RJ45 Ethernet connector (**ETH0**) on the device must be connected with the RJ45 Ethernet connector on the Ethernet hub or switch using twisted pair cable. The device can also be connected directly with a PC if desired. For this, no additional crossover cable is required, since '*Auto-MDX*' support is provided.

2.1 Establish administrator access

There are two ways of putting the device into service. When shipped from the factory, the device is in so-called *DHCP Automatic mode*. In this mode, the device (once switched on) tries to obtain an IP address from a DHCP server. To determine which IP address was assigned to the device, it is possible under Windows to execute the **nbtstat** command with a command line interpreter (e.g. DOS-Box):

```
c:/ nbtstat -R (reloads remote cache table)
```

c:/ nbtstat -a ipxxx-xx-xx (displays the IP address of the specified remote computer using the entered MAC address, where ipxxx is to be replaced with the device name (e.g. ip800 or ip1200) and xx-xx-xx is to be replaced with the last 6 hexadecimal digits of the serial number)

NetBIOS remote machine name table
Name Type Status
ipxxx-XX-XX<00> UNIQUE Registered
195-226-104-217<00> UNIQUE Registered

innovaphone

```
MAC address = 00-90-33-XX-XX-XX
```

Caution

The IP address cannot be displayed with **nbtstat** if the NetBIOS environment is configured exclusively for the name resolution via WINS. If the **nbtstat** command does not find the device, then the NetBIOS name resolution must be configured accordingly.

Under Linux, the **nmblookup** command can be used for this purpose, providing the SAMBA package has been installed:

```
[dvl@cobalt ~ 2]$.nmblookup ipxxx-xx-xx-xx
got a positiv name query response from 195.226.104.217
(195.226.104.217)
```

The device was assigned the IP address 195.226.104.217 . The device can now be accessed from any PC in the same network 195.226.104.x and can be configured as required.

If no DHCP server is available, the **ETHO** interface can be switched to the configured IP address by briefly pressing the Reset key. If an IP address was not explicitly configured, the IP address 192.168.0.1 is specified as standard.

Caution

Once the device has been put into service, *DHCP Automatic mode* should be switched immediately, since a reset changes the operating mode (see also the chapter entitled "*Configuration/ETH0-1/DHCP*").

Note

The initial start-up of the device concerns only the **ETH0** interface. The **ETH1** interface has the fixed IP address **192.168.1.1** during initial start-up.

Note

The state when shipped can be restored through a long reset.

3 User interface

The user interface has been tested with Internet Explorer (5.x, 6.x) and with the Firefox browser. It can, however, also be used with Netscape.

The user interface of the VoIP device can be accessed with a Web browser by calling up the IP address determined beforehand.

3.1 Structure of the user interface

The user interface of the VoIP deviceis divided into two areas:

- The navigation area (along the left and top edge of the screen), which consists of menu and submenu commands.
- The entry area, in which the device settings are made.

The main menus in the left area of the browser are divided into two categories:

- Configuration
- Administration

A main menu, in turn, can be split into several submenus.

innovaphone IP305

Configuration	Info Admin License Update NTP HTTP Server HTTP Client Logging SNMP Telnet
General	
IP	In the Configuration category, everything that is necessary for
ETH0	initial operation (for example, the setting of the ETH0 & ETH1 network interfaces) is carried out.
ETH1	
LDAP	
BRI1	In the Administration category, the settings for active operation can be made. This includes the adding of new users to
BRI2	
Administration	the innovaphone PBX, for example.
PBX	Depending on which main menu entry is currently active or on which setting was made in a submenu, the structure or content of the submenu can change.
Gateway	
Download	
Upload	
Diagnostics	
Reset	

3.2 Protected areas

Apart from the start page, all areas of the device are password-protected. When shipped from the factory, the innovaphone VoIP device has:

- The standard user name **admin** and
- The standard user password **ipxxx** (ipxxx stands for the device type, for example, ip800, ip1200, etc.).

Caution

To raise the security of the VoIP device, the standard user and the standard password should always be changed (see chapter entitled "*Configuration/General/Admin*")!

3.3 Saving the settings

The setting are saved in the respective submenu always using the **OK** button.

 Some changes to settings require a device restart to become effective. In this case, *reset required* is shown in the respective menu. More detailed information on restarting the device is contained in the chapter entitled "Administration/Reset".

4 Configuration and administration

The structure of chapter 4 "*Configuration and administration*" corresponds to that of the user interface (*category / main menu / submenu*).

4.1 Configuration

In the **Configuration** category, everything that is necessary for initial operation of the device is carried out.

4.1.1 Configuration/General

Using the **General** menu, the basic settings for the VoIP device can be made.

4.1.1.1 Configuration/General/Info

General information about the VoIP device is displayed here:

Version	 The software version (6.00) <gateway>[firmware].</gateway> Die bootcode version <boot code="">[firmware].</boot> The hardware version <hw>[no].</hw> The memory size <flash ram="">.</flash>
Serialno	The serial number or MAC address (M edia A ccess C ontrol) of the device (6-digit hexadecimal number).
Coder	The number and type of voice channels.
HDLC	The number of HDLC channels (H igh-level- D ata-Link Chan- nels).
Sync	The physical interface (TEL, PPP, BRI, PRI) used for synchro- nisation.
SNTP Ser-	The IP address of the SNTP server (Simple Network Time-
ver	Protocol) used, if configured.
Time	The time of the device in accordance with the specifications of the NTP server (N etwork T ime P rotocol) and the time zone.
Uptime	The operating time since the last cold or warm start.

4.1.1.2 Configuration/General/Admin

Administrator access is configured here.

Device Name	The name of the device. This name is displayed in the browser as a title.
User Name	The administrator name.
Password	The administrator password, which is used for all protected areas. See chapter 3.2 " <i>Protected areas</i> ".

4.1.1.3 Configuration/General/Licence

The installed licences of the device are displayed here. This menu can also be used to load additional licences.

The types of licence are as follows:

- **BRI LIC** Enables the activation of a BRI ISDN channel.
- **PRI LIC** Enables the activation of a PRI ISDN channel.
- **DSP LIC** Enables the activation of a voice channel in the digital signal processor (DSP). This is always necessary if a transition is to be created from the traditional telecommunications world (analogue or digital) to IP.
- **a/b LIC** Enables the activation of an analogue channel.
- Gatekeeper LIC Enables the activation of a gatekeeper function. This is always necessary if you wish to use a central gatekeeper for trunking with several media gateways. It is not required if you only connect an innovaphone PBX with home users who use the IP110/IP200/IP230 telephones; but it is advisable if you wish to manage external users, who are registered with an IP302, for example, centrally.
- **Basic LIC** Enables installation of the PBX and Voicemail LIC. It is a basic prerequisite for operating the innovaphone Media Gateway as a PBX. The licence size is selected in accordance with the number of necessary registrations on the PBX. An approximate value can be calculated from the number of connected user devices (including fax machines / DECT handsets, etc.) plus 10-15%.
- **PBX LIC** Enables the connection/registration of a terminal with the innovaphone PBX. The order unit is always 10 LIC.
- Voicemail LIC Enables activation of the innovaphone Voicemail. The order unit must be identical to the number of basic licences installed on the

device.

All licences are linked to the MAC address of the device on which they are installed.

In the upper section, the licences already installed are displayed:

Туре	The installed licence type (PBX, Relay or DECT for IP DECT subsystem).
Name	A precise description of the licence with number of registrati- ons followed by the MAC address.
Action	By clicking the download button, the displayed licences can be loaded from the device and saved as a text file. By clicking the delete button, the displayed licence can be deleted from the device. The download all and delete all buttons are used in the same way as the download and delete buttons, but apply to all licences displayed.

In the lower section, additional licences can be loaded:

By entering the location of the licence text file described above in the **File** field or by selecting the location using the **Browse...** button and then clicking **Upload**, additional licences can be loaded onto the device.

With this upload procedure, the licences are saved in the configuration of the device and are available after a short restart. The installed licence is displayed.

4.1.1.4 Configuration/General/Update

The update server is used for efficient administration of various VoIP devices. The update server reads a file at intervals from a configurable URL (**U**niform **R**esource **L**ocator).

Command An URL, for example http://192.168.0.1/update/ File URL script-ip800.txt, pointing to a file whose commands are executed. If the URL ends with a slash (/), for example http:// 192.168.0.1/update/, the device is adding the file name update-ipxxx.htm automatically, deduced from the device short name (for example update-ip800.htm). Furthermore the placeholder #h and #m can be used in the URL-Strina: #h - will be replaced by the device short name (for example IP800). • #m - will be replaced by the device mac-adress (for example 00-90-33-01-02-03). These placeholders may be used e.g. to address a device-specific directory (http://192.168.1.2/update/#h/ script.txt) or to generate HTTP-GET parameters (http:////linearcondensection) /192.168.0.1/update/script.php?mac=#m). If the directory of the file is password-protected, the access credentials must be specified in the chapter "Configuration/General/HTTP Client". Interval An interval (in minutes) at which the file is re-read and [min] executed.

Detailed information on the update server and the update script is contained in Appendix E "*Configuration of the update server*".

4.1.1.5 Configuration/General/NTP

Through specification of an NTP (**N**etwork **T**ime **P**rotocol) server, the VoIP device is able to synchronise its internal clock with an external time source. This is required, as without specification of a time server the internal time is reset to 0:00

innovaphone

hrs, 01.01.1970 after every reset.

Server	The IP address of the time server.
Interval [min]	The time interval (in minutes) at which the device is to syn- chronise with the time server.
Timezone	Facility to select the time zone in which the device is located.
String	Additional time zones can be added in accordance with the IEEE (Institute of Electrical and Electronics Engineers) POSIX (Portable Operating System Interface for UniX) standard.
Last sync	Displays the data and time of the last synchronisation.

Detailed information on the NTP server is contained in Appendix F "*Configuration of an NTP server/client*".

4.1.1.6 Configuration/General/HTTP Server

Advanced, security-related settings of the VoIP device can be made.

Disable HTTP basic authentica- tion	The logon data is transmitted in plain text as standard, and is thus susceptible to recording and eavesdropping. To avoid this weak point, it is recommended that you disable standard authentication (with user name and password) and use digest hash authentication instead.
Password protect all HTTP pages	Apart from the start page <i>Configuration/General/Info</i> , all areas of the user interface require the entry of the administrator user ID. If you enable this check box, a password is compulsory for all pages of the device.
Port	The standard entry here is HTTP Port 80. It can be changed (for example, 8080). The device is then accessible via this port only <i>(for example, <ip device="" of="" the="">:8080</ip></i>).
Allowed stations	Access to the device can be restricted to a particular network area (for example, <i>192.168.0.0 / 255.255.0.0</i>) or to a particular network address (for example, <i>192.168.0.23 / 255.255.255.255</i>).

In addition, all active HTTP sessions are displayed under the **Active HTTP sessions** section.

For example: From 172.16.1.49 To /HTTP0/info.xml No 22.

4.1.1.7 Configuration/General/HTTP Client

Some files that the device must access via HTTP (MoH, announcement, voicemail, etc.) may be located in a password-protected area. The different URLs (**U**niform **R**esource **L**ocator) with the respective user names and passwords can be stored here.

URL	An URL, for example <pre>http://192.168.0.1/update/ script-ip800.txt, pointing to a file in a password-protec- ted directory whose commands are executed.</pre>
	If the URL ends with a slash (/), for example http:// 192.168.0.1/update/, the device is adding the file name update-ipxxx.htm automatically, deduced from the device short name (for example update-ip800.htm).
	The placeholder #h and #m can be used in the URL-String for HTTP-Clients too:
	 #h - will be replaced by the device short name (for example IP800).
	 #m - will be replaced by the device mac-adress (for example 00-90-33-01-02-03).
	These placeholders may be used e.g. to address a device-spe- cific directory (http://192.168.0.1/update/#h/ script.txt) or to generate HTTP-GET parameters (http://192.168.0.1/update/script.php?mac=#m).
User	The authorised user who has access to the directory.
Password	The relevant password of the user.

4.1.1.8 Configuration/General/Logging

External logging is disabled as standard (**Off**). After selection of a log type, logging is enabled, as are the relevant entry fields.

Off Logging is disabled.

TCP The device transmits the syslog entries using a TCP (**T**rans-mission **C**ontrol **P**rotocol) connection.

- In the Address field, the IP address at which the TCP connection is to be set up is entered.
- In the **Port** field, the port to which the connection is set up is specified.
- **SYSLOG** The syslog entries are transmitted to a syslog recipient (also referred to as syslogd, syslog server **or** syslog daemon), which is then responsible for their further evaluation or storage.
 - In the **Address** field, the IP address of the syslogd server is entered.
 - In the **Class** field, the desired message class that will be responsible for further processing of the syslog entries is entered. The syslog class is a numeric value between 0 and 7.
- **HTTP** The syslog entries are transferred to a Web server, where they can be further processed. Each individual syslog entry is transferred as form data to the Web server in HTTP GET format.
 - In the **Address** field, the IP address of the Web server that carries out further processing of the transmitted data is entered.
 - In the **Path** field, the relative URL of the form program on the Web server is entered.

The device will make a HTTP GET request to the Web server on the entered URL, followed by the URL-encoded syslog entry. If, for example, a page named /cdr/ cdrwrite.asp with a form that expects the log message in parameter msg exists on a Web server, then the value / cdr/cdrwrite.asp is entered. The device will then make a GET /cdr/cdr-write.asp?event=syslog&msg=logmsg request to the Web server.

4.1.1.9 Configuration/General/SNMP

The VoIP device allows the operating state to be monitored using SNMP (Simple Network Management Protocol with version 1.0). Standard MIB II and a manufacturer-specific MIB (Management Information Base) are supported. Detailed information about this MIB can be obtained from a certified innovaphone dealer or downloaded directly in the download area of the innovaphone homepage (http://www.innovaphone.com).

Community	If the standard community name <i>public</i> is not being used, a different community name can be entered in this field.
Device Name	For more detailed information, a device name can be specified here for the SNMP agent.
Contact	As can a contact person (Contact).
Location	As can a location (Location).
Authentica- tion Trap	Access via SNMP is only possible if the correct community name is entered. If this check box is checked, a trap is genera- ted in the case of access with an incorrect community name.
Trap Desti- nation	Destinations for trap messages also have to be defined if the device is to trigger the traps defined in the manufacturer-specific innovaphone MIB.
Allowed Networks	To increase security, access to the device can be restricted by restricting SNMP access to a defined list of computers or IP address ranges.

4.1.1.10 Configuration/General/Telnet

Access via the Telnet protocol can be enabled here.

Enable Tel-
netA checked check box enables access to the device using telnet.
The device can be configured with commands such as reset,
config change UP1 /url <http url> /poll <secs>, for example.

4.1.2 Configuration/IP

General IP protocol settings are made here, as well as the configuration of the

VPN protocol PPTP, the DSL protocol PPPOE and the address translation with NAT.

4.1.2.1 Configuration/IP/Settings

The basic IP settings are made here.

ToS Priority	Configuration of the ToS (Type of Service) field for voice pakkets. The value 0×10 is used as standard. Consequently, voice data receives priority forwarding.
First UDP RTP port / numbers of port	This entry restricts the range of ports in which UDP RTP voice data (User Datagram Protocol Real-time Transport Protocol) is received for H.323 or SIP calls. The port range 16384 to 32767 is used as standard. 128 ports are the smallest range. For a voice connection, an RTP port and an RTCP port are used.
	See also the notes contained in Appendix B " <i>Troubleshooting</i> ", section " <i>Port settings in respect of NAT and firewalls</i> ".
First UDP NAT port / numbers of port	This entry restricts the range of ports that may use UDP NAT data (N etwork A ddress T ranslation).

innovaphone

Private Through specification of a private network, the device can control the media relay function. The media relay function is Networks needed, for example, to solve NAT problems. In the case of a call, the PBX and the RELAY then automatically use the media relay function, if they determine that a VoIP call is running between the private and the public network. Here, the private network configuration is always referred to, to find out whether the Calling Party Number and the Called Party Number are located in the same IP network. If nothing is entered here, it is assumed that both parties are located in the public network. The media relay function is not used and RTP packets are exchanged directly between the end points. If a private network is specified, RTP packets are not passed directly between the terminals, but are routed between the internal and external network via the device.

4.1.2.2 Configuration/IP/NAT

The telephone is able to connect IP terminals from the network with a non-public address to the public Internet. For this, **NAT** (Network Address Translation) is necessary. NAT serves as the router and requires a configuration of the PPPoE protocol.

The necessary parameters for this configuration can be set here:

Enable NAT	A checked check box enables NAT in general. This function is only required if the IP telephone is also a DSL router.
Default for-	If all incoming data packets are to be forwarded to a particular
ward desti-	IP address as standard, the destination IP address must be
nation	entered here.
Port-speci-	To be able to address several internal destinations, different
fic forwar-	port number numbers are assigned to IP addresses of the
ding	internal network here.

4.1.2.3 Configuration/IP/H.323 NAT

H.323 NAT is an add-on for the general NAT function. This function is only needed if the telephone connects the private network with the public network. The telephone must therefore represent a connecting point between the two networks. This function enables H.323 calls between private and public networks.

Enable H.323 NAT	Enables NAT for H.323 VoIP calls.
Require authentica- tion	H.323 authentication is obligatory if the check box is checked. This setting protects against externals attacks on the private network. H.323 messages without authentication are not rou- ted to the private network.
H.225/RAS destination	IP address of the server in the private network, to which inco- ming H.225/RAS messages are routed.
H.225/ Signalling destination	IP address of the server in the private network, to which inco- ming H.225/signalling messages are routed.

The **Status** section provides you with a brief overview of the registered users (**Registered Clients**) and the calls currently active (**Active Calls**).

4.1.2.4 Configuration/IP/PPP Config

The parameters for the DSL and VPN connections are set here.

Clicking the interface ID (**PPPn**) opens the respective configuration page, on which the PPP interface configuration can be performed.

PPP Interface PPPn section:

Enable	Enables/disables the interface. The PPP interface is only dis- played in the PPP State overview page if it is enabled.
Connection Port	For PPP connections using ISDN channels, you select one of the ISDN interfaces (PPP, TEL, BRI, PRI) here. This concerns only devices with an ISDN interface. However, PPTP (VPN) and PPPoE (DSL) connections using the Ethernet interface (ETH) are also possible.
Descriptive Name	A descriptive name for the interface can be entered here. This name is used for the overview in the PPP State submenu (see chapter entitled " <i>Configuration/IP/PPP State</i> ").

innovaphone

Bandwidth By specifying a particular bandwidth, the transfer rate for a connect can be restricted and the available network bandwidth is optimally allocated. This is necessary, since for an upstream, the available bandwidth may be lower than required. Packets that exceed the maximum available bandwidth would be discarded. If a bandwidth is specified, packets that exceed the maximum available bandwidth are not sent at all.
 Maximum transfer unit (Bytes)

- octets:
 - X.25 576
 - PPoE (for example, DSL) 1492
 - ISDN, Ethernet 1500
 - ATM 4500

IP Address for Remote Party	Assigns a local IP address to the remote party in order to integrate it in the local network.
Auto dial after boot	Results in the relevant PPP connection of the device being set up and kept open immediately after start-up.
Allow inbound con- nections	If the server is configured as a PPP server, a checked check box allows PPP dial-up connections to the device (inbound).
No DNS on this interface	When a PPP connection to the remote party is set up, an attempt is always made as standard to resolve the name of the remote party to an IP address via DNS. Here, there is always the risk, however, that there may be several PPP connections that use the same IP address (for example, 192.168.1.2). As a result, a name resolution would take place once only, and the data packets sent to a different name with the same IP address are lost.
Exclude interface from NAT	With this setting, a particular interface can be excluded from NAT (N etwork A ddress T ranslation), should NAT be enabled (see chapter entitled " <i>Configuration/IP/NAT</i> ").

No IP Hea- der Com- pression	The VoIP devices support the compression of voice data along the PPP link using the RTP header compression method (RFC 2508, 2509). This drastically reduces the requi- red bandwidth for VoIP calls. To suppress this, the No IP Header compression check box must be enabled.
Adapt to Cisco PPP peers	Try the Adapt to Cisco PPP peers option if a Cisco router is used at the remote location and problems arise in the transmission of voice data.

Authentication section:

The PPP protocol allows reciprocal authentication (inbound/outbound). Generally speaking, for inbound connections, only the **inbound** authentication is required, for **outbound** connections, only the outbound authentication. But it can also happen that an authentication is required both from the client and from the server.

Outbound User / Password	Required for outbound connections. For example, the name of the DSL provider or the DSL user ID of the remote party (1564863maxmuster.1und1.de, 1564863maxmuster@t- online.de), or the Inbound User / Password of the remote party.
Inbound User / Password	Required for inbound connections. For example, the Outbound User / Password of a different gateway.

PPPOE section:

Here, the interface can be configured as a PPPoE client (for example, for DSL).

DSL Provi-	The DSL modem name. Since several modems can occur in a
der (Access	network, a broadcast is sent for identification.
Concentra-	
tor)	

PPTP section:

This operating mode applies for inbound and outbound calls. The PPTP (Point-to-**P**oint **T**unneling **P**rotocol) implements private VPN connections via the Inter-

net or other networks operated with the IP protocol.

PPTP connections are always dial-up connections. An IP address is dialled. Authentication is performed by means of user name and password. In addition, the transferred voice data can be encrypted with MPPE (**M**icrosoft **P**oint-to-**P**oint **E**ncryption). The prerequisite, however, is that the remote party also supports this method. If MPPE was enabled, this may result in a delay in voice transmission. If quality losses of this kind occur, a decision has to be made between security or voice quality.

The innovaphone devices can dial into a remote PPTP server as a PPTP client, as well as provide a dial-in point themselves.

Server Address	The IP address of the PPTP server. If the device itself is to play the role of a PPTP server, then no IP address has to be entered here.
Route to Interface	Here, connection setup inquiries can be forwarded directly to a particular interface. For example: ETH0-1, PPP0-31.
Enable MPPE Encryption	Enables the Microsoft Point-To-Point Encryption Protocol. MPPE (RFC 3078) uses the RSA RC4 algorithm.
Stateless Operation	Here, the key is modified after every transferred packet.
40-Bit Encryption	Enables the encryption with a 40-bit session key.
128-Bit Encryption	Enables the encryption with a 128-bit session key.

ISDN section:

Link Confi- guration	The ISDN interface configuration can be performed here. The PPP interface can be configured here for inbound and for outbound calls.
Link type	 Four different link types can be selected. Singlelink (64k) - A connection via a B channel. Multilink (128k) - A connection via two bundled B channels. Provides double the transmission speed. Permanent B1 - Uses the B1 channel exclusively. Permanent B2 - Uses the B2 channel exclusively.

Local Subs- criber Num- ber	The Local Subscriber Number , in the case of inbound dial- up connections, is the call number (MSN) under which inco- ming calls are to be accepted. The Local Subscriber Number , in the case of outbound dial-up connections, is the outgoing call number (MSN) to be used for the call.
2nd Local Subscriber Number	If Multilink is used, a different call number can be used for the second channel of the PPP remote terminal being called. The entry field can be left empty if the same call number as for the first channel is to be used.
Outbound Connections	Here, the ISDN interface can be configured for outbound PPP dial-up connections.
Called Party Number	The call number (MSN) to be used for the outgoing call.
2nd Called Party Num- ber	The call number (MSN) to be used for the outgoing call on the second B channel.
Inbound Connections	Here, the ISDN interface can be configured for inbound PPP dial-up connections.
Calling Party Num- ber	By specifying the Calling Party Number , the acceptance of incoming calls can be restricted to this one call number. If the entry field is left empty, all data calls are accepted on the selected ISDN interface(s).

IP Routes section:

Static routes for the PPP interface can be configured here. This is required, since no routing protocol is used.

Network Address	The network address of the new route being added.
Network Mask	The network mask of the new route being added.
Gateway	The network address of the default gateway.

4.1.2.5 Configuration/IP/PPP State

The state for all defined and enabled PPP interfaces is displayed here. In addition, it is possible to manually close the connection and set it up again.

Interface	ID of the PPP interfaces.
Address	The local IP address of the PPP interface.
Туре	The interface type: PPTP, PPPoE or, in the case of PPP using an ISDN channel, one of the ISDN interfaces.
State	Displays the current state of the interface. Possible states: <i>Connecting, Up</i> or <i>Down</i> .
Since	The time as of when the connection exists is specified here.
Action	• <i>connect</i> establishes a connection to the selected interface.
	• <i>clear</i> deletes the current connection to the selected interface.
	 <i>info</i> displays relevant connection data for the selected interface.
Name	The name of the interface or connection.

4.1.2.6 Configuration/IP/Routing

The routing table of the current **IP configuration** of the gateway is displayed here. The table is used for fault analysis by the network administrator. The table is structured as follows:

Destina- tion Net- work	The destination network address.
Network Mask	The associated network mask.
Gateway	The IP address of the default router.
Interface	Displays the interface on which the route was created. Possible interfaces are: <i>ETH0</i> , <i>ETH1</i> , <i>PPP0-31</i> , <i>Local</i> and <i>ISDN</i> .
State	Possible states are: Up or Down.

4.1.3 Configuration/ETH0-1

The Ethernet interfaces of the device can be configured here.

The structure of both menus is identical. The special features of, and differences between, the two Ethernet interfaces (**ETH0 & ETH1**) are explained in the text at the relevant place within this chapter. For both Ethernet interfaces, *CAT5-STP* cables are recommended.

4.1.3.1 Configuration/ETH0-1/Link

The transmission mode of the Ethernet interface is defined here.

The **auto** transmission mode is pre-selected:

auto	Automatic selection of the transmission speed.
10m-hdx	Corresponds to 10 MBit Half Duplex.
10m-fdx	Corresponds to 10 MBit Full Duplex.
100m-hdx	Corresponds to 100 MBit Half Duplex.
100m-fdx	Corresponds to 100 MBit Full Duplex.

In addition, the status of the interface (*Up* or *Down*) and the Autonegation used (for example, *100m-fdx*) are displayed.

4.1.3.2 Configuration/ETH0-1/DHCP

The DHCP function can either be disabled in *DHCP Disabled* mode or operated in *DHCP Client* or in *DHCP Server mode*. The DHCP function of the Ethernet interface has four operating modes in total:

DisabledThe IP address and other parameters are configured manually.ServerThe IP parameters are configured manually in DHCP Server
mode (standard IP address 192.168.0.1). The DHCP server
is on and should be configured accordingly as described in
chapter "Configuration/ETH0-1/DHCP Server".ClientIn DHCP Client mode, the device receives its IP configuration
from a DHCP server to whose network the device is connected.

Automatic The first time the device is switched on (powered up), **ETHO** works as a DHCP client. After a restart through briefly pressing the Reset button, the **ETHO** interface is allocated the configured IP address. If an IP address was not explicitly configured (see chapter "*Configuration/ETHO-1/IP*'), the IP address 192.168.0.1 is specified as standard.

In the as-shipped state, **ETHO** is configured in *DHCP Automatic mode* with the IP address 192.168.0.1 and **ETH1** is configured in *DHCP Disabled mode* with the IP address 192.168.1.1.

Caution

DHCP Automatic mode should **not** be used for 'normal' operation, since an accidental restart switches the operating mode.

4.1.3.3 Configuration/ETH0-1/IP

The manual configuration settings are effective if the DHCP mode *Disabled* or *Server* is configured. To the right of the entry fields, the settings currently stored are always displayed.

TP Address The IP address of the network adapter. Network The subnet mask of the network adapter. Mask The standard router of the LAN. Default Gateway **DNS Server** The DNS server of the LAN. Proxy ARP Where IP packets are routed from Ethernet to PPP interfaces via the device, the device can appear to the local network as if it were the addressed terminal itself. This also allows IP terminals on the same Ethernet segment, which do not have a correct routing entry, to communicate over the device and use the WAN connection. To allow dial-in access to the entire network, the Proxy ARP function must be enabled.

Multicast With the Multicast setting, all data packets for sending can be sent to all devices in a network. Data packets are sent to all devices in a network as standard. The Multicast check box is therefore checked.

In the **Static IP Routes** section, additional network routes can be defined, if other network areas apart from the local network are required.

Network Destination	The network address of the destination route.
Network Mask	The relevant subnet mask of the destination route.
Gateway	The standard gateway of the network being routed.

4.1.3.4 Configuration/ETH0-1/NAT

Use of NAT (**N**etwork **A**ddress **T**ranslation) for the relevant interface can be enabled here. It is also possible to exclude particular network addresses and masks from the translation.

Include Interface in NAT	A checked check box enables NAT for the interface, providing NAT was enabled in general under chapter " <i>Configuration/IP/NAT</i> ". In other words, the network connected to ETH <i>n</i> is regarded as external unless it was excluded under Exclude Address or Exclude Mask .
Exclude Address	IP network that should not be included in the Network Address Translation.
Exclude Mask	IP network area that should not be included in the Network Address Translation.

4.1.3.5 Configuration/ETH0-1/VLAN

If a network uses several VLANs (**V**irtual **L**ocal **A**rea **N**etwork), a VLAN can be specified for every Ethernet interface . This ensures that the data packets are

transmitted to the specified VLAN only.

- **ID** The ID of the VLAN. The value 0 is applied if the **ID** entry field is empty. The VLAN ID with the value 0 switches the QoS (**Q**uality **of Service**) off according to 802.1q.
- **Priority** If the switch at the port to the innovaphone gateway happens to be configured to a different ID, the same value must be entered here to allow the Ethernet packets to be prioritised. A priority value between 0 and 7 is entered here (configuration on the Ethernet switch).

4.1.3.6 Configuration/ETH0-1/DHCP Server

If the DHCP server was enabled (see chapter entitled "*Configuration/ETH0-1/DHCP*"), it can be configured here.

All settings marked with a "*" are innovaphone-specific settings that may only be found with innovaphone devices.

Lease Time [min]	The validity period of the DHCP lease in minutes.
Check Interval [min]	The interval (in minutes), at which a check is made whether the DHCP lease is still valid.

Address Ranges:

First Address	The IP address that represents the start of the address range (for example, 192.168.1.100).
Last Address	The IP address that represents the end of the address range (for example, 192.168.1.110).

Offer Parameters:

Network	The network mask in respect of the IP address (for example,
Mask	192.168.1.100 corresponds to the network mask
	255.255.255.0) .

innovaphone

Default Gateway	The standard router (for example, 192.168.1.1).
TOS Priority	The ToS (Type of Service) value for voice packets (0x10).
IP Routing	It is possible to add static IP routes. They must be entered in the format <i>Address:Mask:Gateway</i> . The elements must be separated by a colon. By completing a route with ";", several routes can also be added.
DNS Server 1	The primary DNS server address.
DNS Server 2	The secondary DNS server address.
Syslog Ser- ver	The Syslog server address.
Time Server	The Time server address.
Timezone String *	Here, new time zones can be added to the devices in accor- dance with the IEEE POSIX standard using a particular charac- ter string (for example, CET-1CEST-2,M3.5.0/2,M10.5.0/3).
TFTP Server	The TFTP server address.
WINS Ser- ver	The WINS server address.
Primary Gatekeeper *	The primary gatekeeper IP address.
Secondary Gatekeeper *	The alternative Gatekeeper IP address.
Coder *	Coder preference for VoIP telephones.
Gatekeeper Identifier *	The VoIP gatekeeper or the gatekeeper ID for VoIP telephones.
Dial Tones *	The dial tone that is transmitted as the standard dial tone to the VoIP telephones (for example, <i>German PBX</i> = as German PBX, US = US dial tone, UK = British dial tone).

innovaphone

Enblock Dialling Timeout [s] *	Switches on enbloc dialling for VoIP telephones.
Faststart [0 1] *	With the Faststart[0 1] setting, you can turn on/off the H.323 Faststart procedure.
Tunneling [0 1] *	With the Tunneling[0 1] setting, you can turn on/off the H.245 Tunneling procedure.
Language *	All VoIP telephones that receive their IP address via DHCP have the language defined here set up as the standard language.
Dialling Location *	Defines the various PBX access numbers on VoIP telephoness for directory access. This character string must contain /cc, / ac, /ntp, /itp, /col and /pbx options. Such a character string may look like this: "/cc 49 /ac 7031 /ntp 0 /itp 00 /col 0 /pbx 7".
AM/PM Clock [0 1]	Enables/disables the English time format for VoIP telephones. The German time format is displayed as standard: " <i>dd.mm.yy hh:mm, 24-hour clock."</i> If a 1 is entered in this field, the English time format " <i>mm/dd hh:mm xm, 12-hour am/pm clock"</i> is displayed.
LDAP Direc- tory	To allocate a functioning LDAP configuration to all VoIP devices integrated via DHCP, a configuration character string can be entered in the LDAP Directory field. You obtain this configuration character string by executing the following command in the browser of a configured device: " <i><ip address="" device="" of="" the="" voip="">/!mod cmd PHONEDIR0 ldap-config"</ip></i> . When this command has been executed, a configuration character string is output in the browser, which you copy and paste into the LDAP Directory field of the DHCP server. In this way, all further devices are given a correct LDAP configuration.
Update Interval [min]	All devices integrated via DHCP are assigned the interval spe- cified here in the Interval [min] field of the update server (see chapter entitled "Configuration/General/Update").

Update Server URL All devices integrated via DHCP are assigned the URL specified here (for example, http://192.168.1.2/update/ script.htm) in the Command File URL field of the update server (see chapter entitled "Configuration/General/Update"). An automated update of the devices is thereby ensured.

802.1q The configuration at the switch must be observed for setting the VLAN ID. An empty 802.1q VLAN ID field (16 bit) assumes the value 0. The VLAN ID with the value 0 switches QoS (Quality of Service) off according to 802.1q ab. If the switch at the port to the innovaphone device happens to be configured to a different VLAN ID, the same value must be specified here to allow a prioritisation from the Ethernet. To be able to distinguish between the VLANs, the Ethernet packet is extended by 4 bytes, of which 12 bits are intended for the inclusion of the VLAN ID, making 4094 VLANs possible (VLAN ID 0 and 4095 are reserved or invalid).

802.1pIn the 802.1p VLAN Priority field (3 bit), the associatedVLAN PriorityVLAN priority level (a value between 0 and 7) can be specified, in order that voice data is given priority forwarding, for example.

4.1.3.7 Configuration/ETH0-1/DHCP Leases

VoIP devices that have obtained an IP address from the installed DHCP server via this interface are displayed here.

In the **Reserve IP Address** section, it is also possible to allocate a particular IP address to a particular MAC address.

IP Address	The allocated IP address of the DHCP lease.	
MAC Address	The MAC address of the integrated VoIP device.	
Acknow- ledged	The date on which the DHCP lease was allocated.	
Expires	The date on which the DHCP lease will expire.	
Туре	The type of DHCP lease: Dynamic or Reserved.	
Hostname	The hostname of the integrated VoIP device.	

Under the **Cleanup** section, allocated DHCP leases can be deleted again.

- By clicking **Clear dynamic leases**, all dynamically allocated leases are deleted.
- By clicking **Clear reserved leases**, all reserved leases are deleted.
- By clicking **Clear all leases**, all allocated leases are deleted.

4.1.3.8 Configuration/ETH0-1/Statistics

The **Statistics** submenu provides you with an overview of all sent (tx) and received (rx) data packets:

ty-good	The number of successfully cent packets	
tx-good	The number of successfully sent packets.	
tx-unicast	The number of successfully sent unicast packets.	
tx-broad- cast	The number of successfully sent broadcast packets.	
tx-multi- cast	The number of successfully sent multicast packets.	
tx-lostcar- rier	The number of lost carrier signals. Indicates a defective medium (for example, cable).	
tx-deferred	The number of deferred packets.	
tx-collision	The number of colliding packets (max. 16).	
tx- excesscol	The number of colliding packets (if tx-collision > 16).	
tx-latecol	The number of colliding packets that require too much time to be transmitted. If a collision was detected after the 512th bit of the frame being transmitted was reached, a <i>late collision</i> is output.	
rx-good	The number of successfully received packets.	
rx-unicast	The number of successfully received unicast packets.	
rx-broad- cast	The number of successfully received broadcast packets.	

rx-multi- cast	The number of successfully received multicast packets.
rx-crc-err	The number of received CRC checksum errors.
rx-align-err	The number of alignment errors (incorrect driver, cable defec- tive) when receiving data packets.
rx-too- short	The number of data packets that are too short during the transmission.
rx-too-long	The number of data packets that are too long during the trans- mission.
rx-collision	The number of colliding packets (max. 16).
rx-overrun- err	The number of buffer overrun errors when receiving data pakkets.
rx-queue- overrun	The number of queue overrun errors when receiving data pak- kets.
rx-no-buf- fer	The number of no buffers when receiving data packets.

rx-tx-64	The total number of sent and received packets of 64 Bytes.
rx-tx-64- 127	The total number of sent and received packets of between 64 and 127 Bytes.
rx-tx-128- 255	The total number of sent and received packets of between 128 and 255 Bytes.
rx-tx-256- 511	The total number of sent and received packets of between 256 and 511 Bytes.
rx-tx-512- 1023	The total number of sent and received packets of between 512 and 1023 Bytes.
rx-tx-1024	The total number of sent and received packets of 1024 Bytes.

4.1.4 Configuration/LDAP

The LDAP server and replicator configuration can be performed here. The LDAP server makes the local LDAP database available to external clients.

4.1.4.1 Configuration/LDAP/Server

Here, access data can be configured that allows external LDAP clients read or read and write access to the LDAP database.

VoIP telephones require read access to the LDAP database. Replication connections require write access.

Username	The LDAP user name.
Password	The relevant LDAP user password.
Write Access	Write authorisation is granted if the check box is checked.

4.1.4.2 Configuration/LDAP/Server-Status

The displayed server status data is automatically updated at intervals.

connections	Total number of all connections to the LDAP server.	
write con- nections	Number of connections with write authorisation.	
nections		
rx-search	Number of received search inquiries.	
rx-modify	Number of received change requests.	
rx-add	Number of received add requests.	
rx-del	Number of received delete requests.	
rx-abandon	Number of received termination requests.	
tx-notify	Number of sent notifications.	
tx-error	Number of sent error notifications.	
tx-error-49	Number of sent error notifications due to incorrect access data.	
tx-error-50	Number of sent error notifications due to insufficient rights.	

4.1.4.3 Configuration/LDAP/Replicator

LDAP replication can be configured here. The task of LDAP replication is to copy and keep up to date the entire content or parts of the user database of a remote innovaphone PBX. Replication is required in three application cases:

- 1. Replication of the user data from the master PBX to a standby PBX. The replicator configuration takes place on the standby PBX.
- 2. Replication of the user data from the master PBX to a slave. The replicator configuration takes place on the slave.
- 3. Replication of the user data from a DECT master to a DECT radio. The replicator configuration takes place on the DECT radio.

Server	The LDAP server IP address.
Location	To replicate only the objects of a particular location in the sense of a partial replication, the name of the location (PBX name) can be specified here.
User & Password	The LDAP user and password. Is stored on the LDAP server under the chapter " <i>Configuration/LDAP/Server</i> ".
Enable	A replication only takes place if the Enable check box is chek- ked.

4.1.4.4 Configuration/LDAP/Replicator-Status

The displayed replicator status data is automatically updated at intervals. In addition, the last ten activity messages of the replication are displayed:

Server	IP address and port of the remote LDAP server.
Full Repli- cation	Current state of the replication. There are four states: <i>Stop Starting, Up, Down</i> .
remote	Displays the state of the replication in poll direction.
notify	Number of received notifications.
modify	Number of modified objects.
local	Displays the state of the replication in push direction.
add	Number of locally added objects.
del	Number of locally deleted objects.
modify	Number of locally modified objects.
notify	Number of notifications that have arisen locally.
pending	Number of locally waiting objects.

4.1.5 Configuration/BRI1-2

The device has two ISDN BRI interfaces. The structure of both menus is identical and was therefore combined.

4.1.5.1 Configuration/BRI1-2/Physical

The basic settings of the ISDN interfaces (TEL, PPP, BRI, PRI) can be made here. The settings described here do not occur in every interface. The settings marked with a * are only visible with an existing ISDN PRI interface.

NT Mode	The interface is operated in TE (T erminal E quipment) mode as standard. It behaves like a normal ISDN terminal and synchronises itself to the network clock (clock slave).
	A checked check box operates the interface in NT (N etwork T ermination) mode. It behaves like an ISDN network termination (NTBA) and provides the clock pulse (clock master).
Clock Mode *	- Derived from NT mode (the device's clock pulse is derived from NT mode).
	- Slave (the device obtains its clock pulse from a different device, a clock master).
	- Master (the device provides the clock pulse).
Swap tx/rx	Switches the interface of the transmit line with that of the receive line.
100 Ohm Termi- nation	Turns on 100 Ohm bus termination.
Supply Inline Power	A checked check box turns on the power supply for the relevant interface.

Do not use for synchronisation	The ISDN network usually generates a time stamp in the Connect message. This is used by telephones or PABXs, for example, to set their own clock at the first connec- tion. The devices usually pass on such time stamps, unchanged. However, it may be desired to have the current system time of the device consistently used as the time stamp in all Connect messages. This can be achieved with the "Do not use for synchronisation" setting. Here, the list box must not be enabled. The device must then always have the correct time. Since it does not have its own real-time clock, an NTP server should be configured for this purpose. See also the chapter entitled " <i>Configuration/General/NTP'</i> . This setting usually only makes sense in NT mode.
µ-law	This check box must be checked if the device is located in a country that uses the ISDN μ -law standard. This includes the North America and Asian region, for example.
Permanent Acti- vation	Activates the line permanently. Only in TE mode.
T1 *	Switches the interface from the E1 European standard (2MBit/s or 30 ISDN D channels) to the T1 American standard (1.544 MBit/s or 24 ISDN D channels), which is used in the US, Canada and Japan.
CAS *	With the CAS method (C hannel A ssociated S ignalling), the signalling data (E1 = 16. D channel, T1 = 24.D channel) is transmitted on the same channel as the actual data. Here, one refers to <i>in-band signalling</i> .

Caution

If you enable the CAS method, the content of chapter "*Configuration/PRI1-4/ Protocol*" changes.

No CRC4 * A checked check box disables the Cyclical Redundancy Check. No check value is then generated when transmitting data via the relevant interface.

Relay Off *	Disables the relay function or closes the relay of the <i>power-off loop</i> .
Loopback *	A checked check box enables the loopback function. This is only necessary for test purposes. The loopback function simulates a connected device on the relevant interface.
Txlevel for T1 mode *	Allows the signal volume for T1 mode to be adjusted in decibel. The signal in T1 mode may be increased by Odb, 7.5db or 15db.
Send flags on FDL *	A checked check box transmits FDL messages (F acility D ata Link). Concerns T1 mode.

4.1.5.2 Configuration/BRI1-2/Protocol

In the **Protocol** submenu, you can set the protocol to be used for the ISDN interfaces. From the six available protocols, select the one that is best suited to your environment:

Euro ISDN D-channel protocol:

EDSS1 This type of signalling has gained worldwide acceptance for ISDN subscribers and, despite the name, is also common outside Europe.

QSIG D-channel protocol:

This is a standardised signalling method that is mainly used to connect PBXs. Here, **basic call** and **tunnelling** are supported by the gateways. This allows, in particular, homogeneous PBX systems to be linked with QSIG (1 byte), in which manufacturer-specific properties are exchanged via OSIG.

Unfortunately, there are several variants of the QSIG standard and various implementations; some conform more and some less to the standard.

The gateways therefore support two different variants.

- **QSIG ECMA1** Numbering of the channels from 1-30 (2 bytes)
- **QSIG ECMA2** Numbering of the channels from 1-15, 17-21 (2 bytes)

NI D-channel protocol:

NI	USA (National ISDN 1)
5ESS	USA (AT&T)
DMS100	USA (new standard)

Mode:

If your trunk line is a point-to-point type, select **Point-to-Point**. If it is a pointto-multipoint connection, then select **Point-to-Mulitpoint**. This setting is irrelevant for permanent connections. If the connection is operated in mixed mode (one B channel permanently used for a fixed connection, one B channel in dialup mode), the setting depends on the operating mode of the dial-up line (only TEL1-4 and PPP).

Point-to-Point	Switches on the point-to-point connection.
Point-to-Multi- point	Switches on the point-to-multipoint connection.

4.1.5.3 Configuration/BRI1-2/Interop

The **Interop** submenu normally does not have to be adjusted. This is only necessary if, for example, malfunctions occur when transmitting H.323 calls.

Not all ISDN implementations are prepared to receive certain standard-compliant **information elements** (referred to as **IEs**). Such IEs can be created, for example, when linking up different PABXs or transmitting H.323 calls to an ISDN interface and vice-versa.

If malfunctions are caused by the transmission of certain IEs, the gateways can be made to remove such IEs from the transmitted messages.

Suppress Sen- ding of HLC	No high layer compatibility information elements are transmitted.
Suppress Sen- ding of FTY	No facility information elements are transmitted.
Suppress Sub- address	No subaddress information elements are transmit- ted.

No Restart	Disables the automatic Link Layer connection set up in Point-to-Point mode.
No Overlap Receive	Normally, single digit dialling (overlapped sending) is not used to call terminals (that is, devices in TE mode) on point-to-multipoint connections. Under certain circum- stances however, it is possible for gateways to be con- nected to a PABX system in precisely this mode and then also support incoming single digit dialling (overlapped receive). In this case, an incoming SETUP message is answered, as required in the standard, with a SETUP_ACK message. Some PABXs, however, do not expect this sort of message from terminal equipment and terminate the call at this point. In such a case, the No overlap receive setting prevents the gateway from ans- wering the incoming SETUP message with a SETUP_ACK .
No Disc	No DISC information elements are transmitted. REL is transmitted instead.
Annex N	Allows the sending of inband information during an esta- blished call (only in TE mode).
Volume	Here, you can set a value in decibel (db) between -32db and +32db. Set a suitable value, if the standard value is inadequate or too high.
CR Length	Call reference value in bytes. Select the size (in bytes) of the QSIG protocol, if the standard size is not correct.
СНІ Туре	When using particular protocols (for example, QSIG), you can select a different interface from the one you actually have. Select Basic Rate Interface if you want to simulate a BRI interface. Select Primary Rate Inter- face if you want to simulate a multiplex interface.

4.1.5.4 Configuration/BRI1-2/State

In the **State** submenu, you can display the state of the ISDN or PPP interface. The individual columns are explained in the following table.

Physical State Displays the current state of layer 1 (physical layer). Possible states: Up, Down

Link State	Displays the current state of layer 2 (link layer). Possible states: Up, Down
Channels	Number of channels and their state. (Idle, Busy)

4.1.5.5 Configuration/BRI1-2/Statistics

The values marked with a * are only visible with ISDN PRI interfaces.

State *	Specification of the state (<i>up, down</i>).
Lost Signals	Number of lost signals.
Slips	Number of synchronisation problems of two connected ISDN interfaces.
Alarms *	Number of alarms that have arisen.
Remote Alarms *	Number of remote alarms that have arisen.
Lost Frame Ali- gnments *	Number of lost frames.
CRC4 Errors *	Number of CRC4 checksum errors that have arisen.
D-Channel	Statistics for the D-channel.
Tx-good	Number of successfully sent data packets.
Rx-good	Number of successfully received data packets.
Rx-errors	Number of incorrectly received data packets.

4.2 Administration

Everything that is necessary in active operation is carried out here.

This includes, for example, the registration of VoIP telephones with a gateway or, if available, an innovaphone PBX.

4.2.1 Administration/PBX

This menu is only visible if an innovaphone PBX licence is available (see chapter entitled "Configuration/General/Licence").

4.2.1.1 Administration/PBX/General

The innovaphone PBX can be administered here.

PBX Mode	 The PBX mode <i>Off, Master, Slave</i> or <i>Standby</i>. Off - The PBX is disabled. <i>Master</i> - Operates the PBX on this device as the master. Where several PBXs are operated in combination, there must be one PBX configured as the master. <i>Slave</i> - Operates the PBX on this device as the slave. A slave must register with a master. <i>Standby</i> - Standby PBX for the master. Monitors the functioning of the master and becomes active (as the master) if the master PBX is no longer available.
System Name	The system name. For H.323 terminals, this is the gate-keeper identifier.
PBX Name	The PBX name. If several devices are operated in combi- nation, every device with a PBX component must be allo- cated a unique name. This name is also used for identification when a slave registers with a master.
Unknown Regi- strations	A checked check box allows unknown registrations. These are terminals that have no gatekeeper ID alloca- ted and try to register with a gateway via the Gatekeeper Discovery.
Music On Hold URL	If a valid path (URL) to a music on hold file is specified here, then it is played as soon as a call is <i>put on hold</i> . The URL can be specified in the following format: http://192.168.0.1/webdav/ moh.\$coder?coder=g729,g711a&repeat=true The specification of the wildcard .\$coder?coder=g729,g711a in place of the file extension .g729 enables several formats to be specified. They must be specified separated by a comma and must be available on the Web server. With the addition &repeat=true, an automatic repeat can be enabled.
External Music On Hold	For load balancing purposes, the music on hold can be read from a different device. This device can register with the name configured here. If no name is configured, the music on hold of the local device is read.

CFNR Timer	Global timeout (in seconds) for a call diversion when there is no response, unless configured differently for the respective user.
No. of Regs w/o Pwd	Number of possible registrations without a password entry.
Recall Timer	Time, after which the call is sent back to the switching user following a failed switching attempt (recall). If no value is configured, no recall is made.
Pickup Prefix	The prefix that is to apply to the pickup group.
Enable External Transfer	A checked check box enables external call switching.
Route External Calls to	Here, you specify the long name of the PBX object of the <i>PBX</i> type, to which external calls are to be routed.

If the PBX is operated in Slave mode, then the **Slave PBX** section is displayed:

Master	The IP address of the PBX master.
Alternate Master	The IP address of an alternative PBX master (standby), if available.
Password	The password of the PBX master (slave), if configured.

If the PBX is operated in Standby mode, then the **Standby PBX** section is displayed:

Master The IP address of the PBX master.

The **Licences** section provides you with a brief overview of the available PBX licences and those that have already been allocated:

Registrations	Registration licences.
Operators	Operator licences.
SoftwarePhones	SoftwarePhone licences.
PBX6# <i>n</i>	PBX basic licences.
PBX6# <i>m@n</i>	PBX basic licence upgrades.

Registrations section:

Limit	The maximum number of registrations of the device.
Current	The current number of registrations already performed.

4.2.1.2 Administration/PBX/Password

For the operation of the innovaphone PBX, a PBX password must be allocated. This password is used for the authentication of the standby PBX, as well as for the encryption of user passwords, amongst other things:

Password	The PBX password.
Retype	You must repeat the entry of the PBX password.

4.2.1.3 Administration/PBX/Filter

In the innovaphone PBX, it is possible to define global call filters. In this way, various rights for phoning can be assigned to, or withdrawn from, the users.

Name	The descriptive name of the filter. The name may not be <i>ok</i> or <i>nok</i> , since these names refer to filter properties.
Not / Boolean	A filter can be made dependent on the state of a Boolean object. If a Boolean object was defined here, the filter is only effective if the Boolean object is set to <i>true</i> , unless the <i>Not</i> check box is checked. Then the filter would only be effective if the Boolean object is set to <i>false</i> .
Number	The call number or prefix to be filtered.
Next (ok/nok/ filter)	Possible entries: <i>ok, nok, Filter name (for calling up a fur-ther filter with the designated filter name).</i>

Here are a few filter examples:

Example 1 (allow	Name: Internal Prefix: 0 Action: nok
only internal calls)	Result: Only internal calls. All calls beginning with 0 are
	blocked.

Example 2 (allow only internal calls with exceptions)	Name: Internal_ext Prefix: 0 Action: nok Name: Internal_ext Prefix: 0110 Action: ok Name: Internal_ext Prefix: 0112 Action: ok Result: As in example 1, with the exception that, here, the police and the emergency number may be called.
Example 3 (allow only national calls to Austria and to Switzerland)	Name: National_ext Prefix: 00 Action: nok Name: National_ext Prefix: 0041 Action: ok Name: National_ext Prefix: 0043 Action: ok Result: As in example 1, with the exception that, here, national calls to Austria and to Switzerland may be made.

In the **IP Filter** section, you can define global IP address filters to protect the innovaphone PBX from unauthorised access:

Address	The network address to be filtered.
Mask	The associated network mask.

On the networks defined here, one registration per PBX object without password is possible. If nothing is configured here, a registration without password is possible from any IP address.

In the **Boolean** section, all objects that were created as a Boolean object in the chapter entitled "*Administration/PBX/Objects*" are displayed.

4.2.1.4 Administration/PBX/Objects

All objects configured on the PBX are listed here. It is possible to display individual, several or all objects. To display one or more objects, you must enter the object's name (**Long Name**) or first letter in the field, and then click *show*. Clicking *show* without entering a character string or letter displays all created objects.

The display of the PBX objects is organised in columns. For a more detailed description of the individual columns, please refer to the description of the standard entry fields further down in the text.

Long	The long name of the object.
Name	
Name	The name of the object.

Νο	The call number of the object.
Node	The node that the object is assigned to.
PBX	The PBX that an object is assigned to.
Filter	Display of the filters that were created for the relevant object. See chapter entitled " <i>Administration/PBX/Filter</i> ".
Groups	Display of the group(s) that the object belongs to. Clicking the link + or an existing group name opens a popup page, on which new groups can be defined and edited. Groups can be configured as <i>static, dynamic-in</i> or <i>dynamic-</i> <i>out</i> . For members of static groups, calls are always signalled. It works differently for members of dynamic groups, which register with or unregister from a group dynamically using a function key (Join Group). The difference between <i>dynamic-</i> <i>in</i> and <i>dynamic-out</i> lies in whether the object is to be contai- ned in the relevant group as standard (<i>in</i>) or not (<i>out</i>). The <i>active</i> check box determines whether the group is enab- led for the relevant object.
CF*	Display of the call forwarding(s) defined for the object. Clicking the link \neq or the <i>name</i> of an existing call forwarding opens a popup page, on which new call forwardings can be defined and edited. On this popup page, you can use the Type list box to select a call forwarding type (Call Forwarding Unconditional, Call Forwarding Busy and Call Forwarding No Response).
Туре	A call forwarding can be made dependent on a Boolean object. This can be inverted with the <i>Not</i> button. With the <i>Only</i> and <i>Only not</i> filters, you can define additional exceptions, so that particular subscribers are excluded from the forwarding (<i>Only not</i>) or the forwarding is to apply only to a particular subscriber (<i>Only</i>). Display of the object type. Possible entries: <i>bool, broadcast, dect, dtmf-ctrl, executive, gateway, multicast, mwi, map, loc, trunk, vm</i> and <i>waiting</i> . If the object has already registered, then this is indicated through specification of the <i>IP address</i> , with which the object has registered. The registrations marked with a "*" use a password.

To add a new object, you must select the relevant object and then click the *new* link beside the PBX objects list box. Depending on which object was selected in the list box, the page setup of the subsequent popup changes. This popup page

contains standard entry fields, some of which occur in all objects.

These fields are:

Long Name	The long name of the object. This name is used to identify the object in the database and for display purposes. The long name must be unique throughout the system.
Name	The name of the object. This name is used for signalling (like a call number) and must be unique throughout the system.
Number	The call number of the object. The call number must always be unique in relation to a <i>node</i> .
Hardware ID	The hardware ID of the terminal that is to register with this object.
Node	The node that the object is assigned to. The node determines the unique call number with which an object can be accessed throughout the system. Objects located in the root node can be accessed without a location prefix; otherwise, the location prefix always has to
	be dialled as well. If you enable the <i>Local</i> check box, then, despite a different location prefix, it is no longer necessary to use it.
	This list box is displayed only in connection with the PBX object of the <i>PBX</i> type.
PBX	The PBX or location that the object is assigned to. This PBX accepts registrations for the object. This list box is displayed only in connection with the PBX object of the <i>PBX</i> type.
Local	The effect of the Local flag is that objects of different nodes can be registered and called without a location prefix. This check box is displayed only in connection with the PBX object of the <i>PBX</i> type.
Password / Retype Password	If a registration password is allocated here, then it must be specified during registration, or otherwise the registration will fail.
Filter	For most PBX objects, you can allocate a specific filter (see chapter entitled " <i>Administration/PBX/Filter</i> ").
Diversion Filter CFNR Timeout	A filter can also be selected for call forwarding should this take place (see chapter entitled " <i>Administration/PBX/Filter</i> "). The time set here (in seconds) is the interval that elapses before a user's call forwarding is initialised.

Busy on <i>n</i> Call(s)	Maximum number of calls made simultaneously. If, for example, the numeric value <i>two</i> is entered, then <i>busy</i> is signalled to the third and all further incoming calls. Just as
	only two calls can be set up parallel.
Group Indicati-	If call groups have already been created, you can select them here and add them to new objects.
ons	

The object-specific entry fields are displayed accordingly as an extended section. Below is an overview of all possible objects in the innovaphone PBX:

4.2.1.4.1 User Object:

With the *User* PBX object, you define the standard subscribers of the innovaphone PBX.

The following details are entered in the **DECT** section and are therefore only relevant for DECT handset registrations:

Gateway	The system name (Name) of the IP DECT device.
Display	A variable text that is output on the IP DECT handset display.
IPEI	The serial number of the IP DECT handset. Is required for unique registration of an IP DECT handset.
AC(Access Code)	It is also possible to allocate an access code (a kind of PIN), which protects the IP DECT handset against unauthorised use.

4.2.1.4.2 Boolean Object:

The *Boolean* PBX object is used to define time-dependent true or false states in the innovaphone PBX, and can be used for call forwarding or filters.

For example, the Boolean object *Working hours (Mo-Fr 08:00-18:00 hrs)* can be defined, which in the true state (that is, during office hours) is set to *true* and outside office hours is set to *false*. This would enable a filter to be defined that allows calls during office hours only.

In the same way, this Boolean object can be used for call forwarding. In the true state (*true*), it would allow call forwarding to a particular subscriber during office hours, in the false state (*false*) outside office hours.

The current state can be switched using manual override.

The following specifications are made in the **Boolean** section.

Announcement (URL):

TRUE	The path of the audio file to be played in the true state
	(<i>true</i>).

FALSE The path of the audio file to be played in the false state (*false*). This specification only makes sense if a call is received directly on this object.

Announcement (URL) if manual override is active (optional)

- **TRUE** The path of the audio file to be played in the event of a manual override in the true state (*true*).
- **FALSE** The path of the audio file to be played in the event of a manual override in the false state (*false*). This specification only makes sense if a call is received directly on this object.
- **External** It is possible to forward a call directly to a subscriber or call number, without playing the audio file first.
- Manual The Manual Override list box allows you to change the cur-Override rent state. A manual override (MO) can also be set using DTMF. For this, the call number of the Boolean object, followed directly by the relevant DTMF code simply have to be dialled. The following DTMF codes are possible: <Boolean object call number>01 - MO default state <Boolean object call number>11 - MO true state <Boolean object call number>10 - MO false state For example, the Boolean object *Working hours* with the call number 50 in the *true* state would be transferred to the *false* state with the code 5011. It works exactly the same the other way round. If the Boolean object Working hours is in the *false* state, then it is transferred back to the *true* state with the code 5011. Note that the manual override should always be viewed in relation to the initial state. Weekday Here, you specify the time condition for the decision true

(*true*) or (*false*).

+ Time Specification

Note

The current state of the Boolean object is visible in the *Boolean* section under chapter "*Administration/PBX/Filter*".

4.2.1.4.3 Call Broadcast Object:

With the *Call Broadcast* PBX object, it is to possible to distribute all calls arriving on this object to all member of a group that this Call Broadcast object belongs to. Here, it is possible to allocate a call number to this object, enabling in turn a call diversion, if say the subscribers of the Broadcast group are busy or cannot be reached.

The following specifications are made in the **Broadcast** section:

Group Member Diversions	In the case of a call to a subscriber of a Broadcast group with enabled call forwarding, no call forwarding is evaluated as standard. With a checked check box, the call forwarding of the subscriber is evaluated in the case of a call to the Broad- cast group.
Robin Timeout (s)	With the R ound R obin Timer (RRT), an algorithm can be enabled which, after the specified interval has elapsed, signals incoming calls to the next subscriber of the Call Broadcast group. A case example would be the support department of a com- pany created as the Call Broadcast object. Several support staff belong to this object. By specifying the RRT, call distri- bution to the support staff can be automated. Here, the RRT is so intelligent that it makes a note of the last phoning subs-

4.2.1.4.4 DECT System Object

To be able to register a DECT system in the innovaphone PBX, a *DECT System* PBX object is required. All DECT-specific information is stored in this *DECT System* PBX object. During initial start-up of a DECT system, this object must be created in an existing innovaphone PBX environment.

4.2.1.4.5 DTMF Features Object

The *DTMF Features* PBX object is used to set call diversions via DTMF (**D**ual **T**one **M**ultiple **F**requency). For this, a *DTMF Features object* with a unique name and call number is defined. To set a call diversion, a user needs only to dial this call number, followed by the desired DTMF feature code (for example, *21* for CFU) and the destination number (where the call is to be diverted to) completed by the hash character (#). It works exactly the same when deleting existing call diversions via DTMF. First you dial the call number of the *DTMF Features object*, followed by the desired DTMF feature code (for example, ##21# for CFU). The destination number does not have to be specified when deleting. The following features codes were implemented for the *DTMF Features object* :

Set CFU = <*DTMF object call number*>*21*<*Destination number*>#

Delete CFU = <*DTMF object call number*>##21#

Set CFB = <*DTMF object call number*>*67*<*Destination number*>#

Delete CFB = < *DTMF object call number*>##67#

Set CFNR = <*DTMF object call number*>*61*<*Destination number*>#

Delete CFNR = <*DTMF object call number*>##61#.

Note

In a later version, the PBX will recognise all GSM feature codes independently, making the *DTMF Features object* superfluous.

4.2.1.4.6 Executive Object:

The *Executive* PBX object is used to implement the boss/secretary functions. The boss's telephone registers with this object. Furthermore, two groups can be defined for this object: the primary secretary, which is directly subordinate to the boss, and the secondary secretary, which stands in for the primary secretary.

There is still a third group that can be defined – its members may phone the boss directly without the call being signalled on the phones of the secretaries. All calls to the boss are sent to the primary secretary. If no registration exists for the primary secretary, then the calls are forwarded to the secondary secretary. All calls to the secretary groups are signalled as a diverted call, with the boss displayed as the call diverter.

Every call received by the boss that was previously received by the secretaries is likewise signalled as a diverted call. It is thus possible to adjust the boss's ring tone, so that it rings differently if the call was initialised by one of the secretaries. If a call is received directly on the boss's phone, that is, not via the secretaries, it can be signalled with a different ring tone.

The following specifications are made in the **EXECUTIVE** section:

Primary	The <i>Primary</i> secretary group, when added, may be selected here.
Secondary	The <i>Secondary</i> secretary group, when added, may be selected here.
Direct Call	The <i>Direct Call</i> secretary group, when added, may be selected here.
Call Exe- cutive	Calls to the secretary's phone are also signalled on the boss's phone, if this check box is checked.

If no secretary groups have yet been created for this object, the **Primary**, **Secondary** and **Direct Call** entry fields are empty.

4.2.1.4.7 Gateway Object

The *Gateway* PBX object is used to register a gateway with the PBX. The *Gateway* PBX object thus provides the direct dialling capability with or without prefix.

EnblockTime (in seconds), after which the call set-up begins.Count

Prefix A prefix can be added.

4.2.1.4.8 MCast Announcement Object:

The *MCast Announce* PBX object allows a call to be put through directly on several telephones. For this, a group must be defined for the MCast Announce object, and all subscribers belonging to this group are addressed.

The following specifications are made in the **Multicast** section:

MulticastA multicast IP address must be specified. For IPv4, the multi-
cast address range 224.0.0.0 to 239.255.255.255
applies.

Multicast Port	A port must also be specified. It can be any port of your choice.
Coder	The coder to be used for multicast calls can be selected here. You can select from the following: <i>G729, G711A, G711u</i> and <i>G723</i> .
Packetiza- tion (ms)	Reduces the protocol overhead, thereby increasing the band- width available for voice data. Bear in mind that the overhead grows significantly with reduced packet size, since the per- packet transport overhead (IP protocol in LAN and additio- nally PPP protocol in WAN) remains the same while the voice data payload becomes less.
Call Busy Endpoints	Calls are also signalled on the phones of subscribers who are currently phoning and are therefore busy, if this check box is checked.

4.2.1.4.9 Message Waiting Object:

The *Message Waiting* PBX object was implemented to integrate external applications of other manufacturers (voicemail solutions) in the innovaphone PBX. Since some applications do not support the transmission of so-called MWI messages (LED on/off), the status regarding whether a message for a particular object exists is lost if say an MWI-enabled VoIP telephone is restarted.

The MWI object in the PBX is able to note the status for every object. For this, however, the external application (voicemail) must be prompted to send the current status for the individual user to the innovaphone PBX via H.450.7. The H.323 SETUP message must also be sent the call number of the relevant subscriber, or otherwise the PBX does not know which subscriber the MWI message should be sent to.

The status can also be sent using DTMF. Dazu muss einfach nur die Rufnummer des MWI-Objektes (z.B.: 20) gefolgt des entsprechenden DTMF-Code gewählt werden:

201 - Sends the MWI message, MWI LED on

202 - Sends the MWI message, MWI LED off

Furthermore, in the case of a call to this object, an audio file in the relevant coder format that is stored on a HTTP server can be played or even forwarded to a different subscriber.

The following specifications are made in the **MWI** section:

Announce-
ment URLThe path of the audio file to be played.External
Name/NoAfter the audio file has played, the call can be forwarded to a
different subscriber or call number.

4.2.1.4.10 Number Map Object:

The *Number Map* PBX object allows you to store abbreviated dialling numbers in the PBX. For example, you can define the abbreviated dialling number #1 (**Number** = #1) for the local police station (07031-110). When using several locations, this can have undesired side-effects however, since a subscriber of a different location (B) would always call the police station of the one location (A) with this abbreviated dialling number. Therefore, when defining a Number Map, the IP address range with network mask must always be specified.

The following specifications are made in the **MAP** section:

Address	The IP address range that is authorised to use this Number Map. To allow all subscribers to use this Number Map, you can leave this field empty.
Mask	If all subscribers are to be permitted to use this Number Map, you must enter the subnet mask 0.0.0; otherwise, you enter the relevant network mask of the authorised IP address range.
Dest. No	The destination number with which this Number Map is to be linked.

4.2.1.4.11 PBX Object:

If several locations are used, it is essential that a PBX object of the *PBX* type be created for each one. The name (**Name**) of this object is also the node description. The call number (**Number**) represents the prefix of the location. If a PBX object was defined, the menu set-up for the objects is extended through the addition of the *Node*, *PBX* and *Local* entry fields.

4.2.1.4.12 Trunk Line Object:

The *Trunk Line* PBX object represents the trunk line in the innovaphone PBX. To register an ISDN trunk line with the *Trunk Line* PBX object, an H.323 registration with specification of the gatekeeper ID and call number simply has to be activated on the interface with connected trunk line (see also chapter "*Administration/Gateway/Interfaces'*).

The following specifications are made in the **Trunk** section:

Loopback	If the call number of the exchange was dialled in incoming calls via the exchange, call forwarding can be initiated by specifying a valid H.323 name (Name) or E.164 alias (Number).
Incom- plete	If an incomplete call number was dialled in incoming calls via the exchange, call forwarding can be initiated by specifying a valid H.323 name (Name) or E.164 alias (Number).
Invalid	If an invalid call number was dialled in incoming calls via the exchange, call forwarding can be initiated by specifying a valid H.323 name (Name) or E.164 alias (Number).
Busy	If, in incoming calls via the exchange, a call number was dialled that is busy, call forwarding can be initiated by specifying a valid H.323 name (Name) or E.164 alias (Number).
No Answer Timeout	If, in incoming calls via the exchange, a call number was dialled and there is no answer, call forwarding can be initiated, after the specified time has elapsed (Timeout), by specifying a valid H.323 name (Name) or E.164 alias (Number).
Reroute supported	This check box can be enabled without reservation if the ISDN provider supports this feature. Since an external call diversion uses two B channels (one for the incoming call and one for the outgoing call), they can be saved by enabling this feature. The call is set up directly between the two external subscribers. The " <i>Set Calling = Diverting No.</i> " option therefore becomes superfluous, since in this sense no call diversion actually takes place, but rather the relocation of external incoming calls, which in turn are forwarded to an external subscriber.

Set Cal- ling = Diverting No	Concerns calls that arrive on the PBX via the <i>Trunk Line</i> PBX object and are then forwarded by CFU, CFB or CFNR (Call Forwarding Unconditional, Call Forwarding Busy or Call Forwarding No Response) again via the Trunk Line object. For example: Subscriber A calls subscriber B. Subscriber B forwards the call from subscriber A to subscriber C.
	The CGPN (C alling P arty N umber) remains unchanged for a call diversion. Merely the DGPN (D iverting P arty N umber) is also sent as information, so that both call numbers are visible at the diversion destination (subscriber C). For an external call diversion to the PSTN, it is not permitted to use an external CGPN (subscriber A), however. Therefore, the CGPN must be replaced by an associated call number, in this case the DGPN (subscriber B). If this check box is not enabled, the local telephone office, in such as case, will automatically replace the CGPN through "screening".
	If you enable this check box, the diversion call is signalled as a normal outgoing call. The CGPN is then a number that belongs to the connection (subscriber B).
Outgoing Calls restricted	This check box allows you to suppress the display of the out- going call number in general.
Outgoing Calls CGPN	The call number for outgoing calls (C allin g P arty N umber) can be manipulated in general.

Here is an example of how a *trunk line* can be established or simulated:

- 1. First, the *Trunk Line* PBX object with the E.164 call number **0** and the H.323 name **Exchange** must be created.
- 2. On a free ISDN interface (PPP, TEL, BRI or PRI), you enable the H.323 registration and allocate the name of the of the *Trunk Line* object (Exchange) or the call number (0), as well as the IP address of the gatekeeper on which the PBX is operated. It is also sufficient to specify the local IP address 127.0.0.1 if the gatekeeper happens to be operated on the same device. The interface must have successfully registered with the PBX object and calls to the *Trunk Line* PBX object must be possible. A dial tone is played at this point only with a connected ISDN trunk line. Suffix dialling digits are accepted.
- 3. To simulate a dial tone for least cost scenarios, for example (see also the

chapter entitled "Administration/Gateway/Interface/Virtual Interface (TEST, TONE, HTTP)", a free VoIP interface is required, which likewise registers with the *Trunk Line* PBX object as the gateway (mode). The gatekeeper address is allocated as described in the previous point. The name (Exchange) or the call number (0) of the *Trunk Line* PBX object are also allocated in the same way (under Alias List).

4. Finally, a route from the ISDN interface and from the VoIP interface to the TONE interface must be created, enabling the simulated dial tone to be played. Suffix dialling digits are accepted.

4.2.1.4.13 Voicemail Object:

For every PBX user, a personal answerphone can be defined. For this, a global *Voicemail* PBX object with a unique global call number must be created. A user's voicemail number is made up of the voicemailbox number allocated here (for example, 66) and the user's call number (for example, 47). In this case, the user-specific voicemail number would be 6647! Using a telephone's function keys, the user can set up call forwarding (CFU) to his/her own voicemailbox, for example. It is even possible to program a direct dial (Message Waiting) to the voicemailbox to listen to existing messages. More detailed information on the function keys may be found in the telephone manual.

The following specifications are made in the **Voicemail** section:

- **Script URL** The path to the voicemail script file (vm.xml), which is located on a HTTP or WebDAV (**Web**-based **D**istributed **A**uthoring and **V**ersioning) server. Detailed information on setting up a WebDAV server and the voicemail is contained in the innovaphone knowledgebase under the keyword "WebDAV" or "voicemail".
- **Trace** A checked check box enables the output of trace information in respect of voicemail. See also the chapter entitled "*Administration/Diagnostics/Tracing*".

4.2.1.4.14 Waiting Queue Object:

The *Waiting Queue* PBX object represents a waiting loop in the innovaphone PBX. When a call is received on this object, an audio file stored on a HTTP server is played back. The following specifications are made in the **Queue** section:

1st Announcement

URL	The path of the audio file to be played. If a second Announcement is defined, this file is played only once. The playing of the audio file is repeated as standard. The URL can be specified in the following format: http://192.168.0.1/webdav/ moh.\$coder?coder=g729,g711a&repeat=true The specification of the wildcard .\$coder?coder=g729,g711a in place of the file exten- sion .g729 enables several formats to be specified. They must be specified separated by a comma and must be availa- ble on the Web server. With the addition &repeat=false, an automatic repeat can be disabled.		
Name/No	Forwarding to an external user can take place alternatively.		
2nd Announce	ement		
URL	The path of the second audio file to be played. If a second URL is specified here, then it is played after the first Announcement URL. For the second Announcement, the playing of the audio file is likewise repeated as standard (see 1st Announcement).		
External Name/No	For the second Announcement, forwarding to an external user can likewise take place.		
Max Call/ Operator (%)	By specifying a percentage value, calls that are forwarded to a call number or an operator (additional licences required) can be restricted.		
Alert	The music on hold or announcement is played after the time interval specified here has elapsed.		
Round Robin	Timeout before a switchover to the next subscriber.		
Primary	Time interval for the Primary Group.		

Primary Group	The <i>Primary Group</i> list box allows you to define which group should be the Primary Group, in so far as at least two groups were created for the Waiting Queue. If a <i>Primary Group</i> is specified, the calls are signalled first to the subscribers of the <i>Primary Group</i> , and are also signalled to the subscribers of the other group after the Primary time interval has elapsed.
DTMF	It is also possible to allow call forwarding using touch-tone dialling (DTMF).
Dest. No	DTMF = The DTMF character string (for example, 1 or *1#).
Dest.	Dest. No = The destination number.
Name	Dest. Name = The destination name.

4.2.1.5 Administration/PBX/Calls

In the **Calls** PBX overview page, all calls actively being made can be monitored. This is advantageous for diagnostic purposes in particular, since the existence of possible network problems, for example, is immediately visible (see **Media**).

Subscriber A:

Number	Display of the calling number.
Name	Display of the calling name.
Protocol	Display of the protocol used on the calling side.
Media	Display of the coder used on the calling side, for example, $G711AB(2,0,0)$. The values in brackets have the following meaning, in order: Round trip (RT) = Transit time of a data packet from A to B and back again.
	Jitter = Latency time (time interval from the end of an event up to the start of the response). Loss (PL) = Number of lost packets (packet loss).
Dir	In the <i>Alerting</i> state ">" and in the <i>Connected</i> state ">>".
Subscriber B:	

Number	Display of the called number.
Name	Display of the called name.
Protocol	Display of the protocol used on the called side.
Media	Display of the coder used on the called side.

State Possible states: *Alerting, Calling, Connected, Disconnecting.*

4.2.2 Administration/Gateway

The gateway configuration of the device can be performed here. The Gateway menu establishes the connection to the conventional telephone network, for example, via a digital ISDN interface or a VoIP interface. Depending on which device is used, various interfaces are available. They include the virtual TEST, TONE and HTTP interfaces, the analogue interfaces (TEL), as well as the ISDN interfaces (TEL, PPP, BRI or PRI). With the use of additional licences, so-called VoIP interfaces (GW1-12) are also available, which enable the linking of PBXs without using the innovaphone PBX, for example.

4.2.2.1 Administration/Gateway/General

General gateway settings can be made here:

Gatekeeper ID	The unique gatekeeper name. If several gatekeepers are used in a network, then different gatekeeper IDs must be allocated. This gatekeeper ID is the ID for VoIP inter- faces (see also the chapter entitled <i>"Administration/Gate- way/VoIP</i> "). This field is displayed only in connection with a gatekee- per licence.
Automatic CGPN Mapping	A checked check box enables automatic call number handling. The modification to the calling number is pro- duced by analysing the routing table. Here a route is searched for, that would enable callback to the current call. There is the option of excluding individual routes from the automatic correction of all calling numbers (see <i>Exclude from Auto CGPN</i> check box in the Settings sec- tion of chapter " <i>Administration/Gateway/Routes</i> ").
Call Logging	A checked check box enables the output of syslog infor- mation in respect of the calls made via the gateway.
Route Logging	A checked check box enables the output of syslog infor- mation in respect of the used voice routes of the gate- way.

Billing CDRsIf, in chapter "Administration/Gateway/CDR0-1", a
method was specified for transmitting so-called Call
Detail Records (CDR), only call information that is relevant for billing is transmitted, if this check box is chekked.

The **Feature Codes** section is enabled as soon as the *Supplementary Services (with Feature Codes)* check box is explicitly checked for an interface (see chapter entitled "*Administration/Gateway/Interfaces*") or the *Enable* check box is chekked for an IP DECT device (see chapter entitled "*Configuration/DECT/Features*").

Using **Feature Codes**, further features are made available to the VoIP telephones. The codes for these features can be configured. Here, it is to be noted:

- that the "\$" character stands for a variable number of characters (for example, a telephone number) and
- the "\$(x)" character for a fixed number of characters of length (x).
- Principally actions will be initialized with the "*"-character and
- with the *"#*"-character actions will be cancelled.

Forwarding options

The IP devices supports three different types of call forwardings:

Activity	Code	Description
CFU Activate Deactivate	*21*\$# #21#	Activates/deactivates continuous call for- warding. The \$ character stands for the destination number.
CFB Activate Deactivate	*67*\$# #67#	Activates/deactivates call forwarding if the line is busy. The \$ character stands for the destination number.
CFNR Activate Deactivate	*61*\$# #61#	Activates/deactivates call forwarding if there is no answer. The \$ character stands for the destination number.

Lock

VOIP-Phones can be locked from default status with following hotkey:

Activity	Code	Description
Lock Phone	*33*\$#	Activates/deactivates the phone's keylock.
Unlock	#33*\$#	The "\$ "-character stands for the PIN.

PIN

Restrict access for unauthorised users. With this function the protection can be activated and the PIN can be setted.:

Activity	Code	Description
Set PIN	*99*\$*\$*\$#	Stores a PIN for the telephone. The first \$ character is the old PIN (the first time the PIN is set, no character is replaced here); the next two 2 \$ characters are the new PIN.

Call protection

With this function the reaction to incoming calls can be handled specially.

In silence mode the telephone will getting muted. The caller still can hear the free-tone.

Aktivität	Code	Beschreibung
Do not Disturb		No calls are put through if the check box is checked.
On Off	*42# #42#	
Do not Disturb Int.		No internal calls are put through if the check box is checked.
On Off	*421# #421#	

Do not Disturb Ext.		No external calls are put through if the check box is checked.
On Off	*422# #422#	

Call waiting functions

Aktivität	Code	Beschreibung
Call Waiting		Activates/deactivates the call waiting function of the telephone.
On Off	*43# #43#	

Delete local settings

Aktivität	Code	Beschreibung
Clear Local Settings	*00#	Deletes all Feature Code settings made.

Pickup

Incoming calls can be overtaken inside a group.

Aktivität	Code	Beschreibung
Pickup Group	*0#	<i>Pickup Group</i> picks up a call of a pickup group. With <i>Directed</i> , a particular call can
Directed	*0*\$#	be picked up through specification of the call number.

Park

Aktivität Code Beschreibung

Park	R*16\$(1)	With <i>Park</i> , a call can be parked by pressing the R key and then entering the Feature Code $(1 = \text{position on own extension})$.
Unpark	#16\$(1)	With Unpark, it can be retrieved again.
Park To	*17\$(1)\$#	Same as <i>Park</i> , only that the call is parked on a different extension, for example, the
Unpark From	#17\$(1)\$#	exchange (0).

Join Group

Aktivität	Code	Beschreibung
Group Join	*31#	With <i>Group Join</i> , you join a group. With <i>Leave</i> , you leave it again. Not implemen-
Leave	#31#	ted for IP DECT.

Call back

With following code it is possible to initiate a call back at the caller side, if it is busy.

Aktivität	Code	Beschreibung
Call Comple- tion	*37#	With <i>Call Completion</i> , a callback can be initiated if the called subscriber happens to be busy. Not implemented for IP DECT.
Cancel	#37#	

The **Licences** section provides you with a brief overview of the available device depended licences and those that have already been allocated:

Gateway	Gateway licences.
Gatekeeper6	Gatekeeper licences.
BRIs	BRI interfaces.
PRIs	PRI interfaces.

Channels	DSP channels.
aBs	AB-interfaces.
Registrations	Registratios-licenses.

4.2.2.2 Administration/Gateway/Interfaces

The display of the gateway's configurable interfaces is organised in columns:

Interface	The name of the interface. Clicking this name opens a popup page, on which all settings can be made. The settings are described in more detail in the following chapter " <i>Administration/Gateway/Interfaces/Interface (ISDN & virtual interfaces)</i> ".
CGPN In, CDPN In, CGPN Out, CDPN Out	Precise details on CGPN In, CDPN In, CGPN Out and CDPN Out mappings are contained in the chapter entitled " <i>Administration/Gateway/Interfaces/CGPN-CDPN Mappings</i> " further down in the text.
State	The current state of the interface at physical and at pro- tocol level. Possible states are: <i>Up, Down.</i>
Registration	If a terminal has successfully registered with an ISDN, SIP or virtual interface, then this is indicated in this column through specification of the <i>IP address<name i="" of<=""> <i>the VoIP interface:Call number:IP address></i>.</name></i>

4.2.2.2.1 Interface (ISDN, SIP & virtual interfaces)

Clicking the name of an interface in the **Interface** column opens a popup page, on which the interfaces can be individually configured. Like the PBX objects, this popup page also contains standard entry fields that occur, more or less, in all interfaces. These standard fields are:

- **Disable** A checked check box disables the relevant interface.
- **Tones**The standard calling tone for the relevant interface is set
with the Tones list box.

Interface Maps	The interface can be configured as a point-to-point con- nection (<i>Point-to-Point</i>), as a point-to-multipoint connec- tion (<i>Point-to-Multipoint</i>) or manually (<i>Manual</i>) using CGPN/CDPN maps. See description further down in the text.
Registration	With the Registration list box, an H.323 registration or a SIP registration can be initiated for ISDN interfaces. The routes to be handled as incoming and outgoing calls on the relevant interface are automatically created here (see " <i>Administration/Gateway/Routes</i> ").

ISDN interfaces (PPP, TEL1-4, BRI1-4, PRI1-4)

After selection of an **interface map**, the relevant section is displayed. If *Point-to-Point* is selected, the **Interface Maps Point-to-Point** section is displayed:

Area Code	The international code (for example, 49).
Subscriber Num- ber	The local network number (for example, 7031).
National Prefix	The national prefix (for example, 0).
International Prefix	The international prefix (for example, 00).

If *Trunk Point-to-Multipoint* is selected, the **Interface Maps Point-to-Multipoint** section is displayed:

MSN1-3 / Ext.	For every ISDN basic access, several call numbers can be configured. The innovaphone-Gateways support up to three multiple subscriber numbers (<i>MSN1-3</i>), followed by the extension (<i>Ext.</i>), which represents the extension to which the MSN is to be mapped.
National Prefix	The national prefix (for example, 0).
International Prefix	The international prefix (for example, 00).

Coder Preferences section:

After selection of a registration method, the Coder Preferences section is dis-

played together with the relevant **Registration** section. The standard entry fields in the **Coder Preferences** section are:

- ModelThe Model list box allows you to select the coder to be
used. The coders available for selection are:
G711A, G711u, G723-53, G729A, G726-32 and XPARENT.
If the remote VoIP device does not support the set coder,
a commonly supported coder is used, unless the Exclu-
sive check box was enabled.
- Frame Determines the packet size used in transmitting voice data (in ms). Larger packets cause a greater delay in voice data transmission, but cause less load on the network, since the *overhead* involved in transporting the packets in the network is lower. The higher the packet size used, the lower the bandwidth effectively used.

baing methoa	Packet Size	Danuwiuun
G.711	30ms	77 kb
G.711	90ms	68 kb
G.729	30ms	21 kb
G.729	90ms	12 kb

- **Exclusive** A checked check box enforces the set encoding (*Model*), regardless of whether it is supported by the remote VoIP device.
- SC A checked check box enables SC (Silence Compression). With SC, no data is transmitted during pauses in the conversation. This also allows bandwidth to be saved without quality loss.
- **Enable T.38** A checked check box enables the *T.38* Fax-over-IP protocol. If a fax machine was connected to the relevant interface, then this check box must be enabled; otherwise, fax transmissions are not handled.
- **Enable PCM** A checked check box enables the PCM switch (**P**ulse **C**ode **M**anipulation). Calls from one interface to another interface are then handled directly over the ISDN PCM bus, which in turn saves DSP channels. This entry field is optional and is displayed only in particular devices.

Registration section:

All non-virtual interfaces additionally have the **Registration** section after selection of the registration method.

The entry fields for an **H.323** registration are:

Gatekeeper Address (pri- mary)	The primary gatekeeper IP address at which the inter- face is to register. If the primary gatekeeper is located on the same device, the local IP address 127.0.0.1 can also be entered here.
Gatekeeper Address (secon- dary)	The secondary gatekeeper IP address at which the inter- face is to register, if registration with the primary gate- keeper fails. If the secondary gatekeeper is located on the same device, the local IP address 127.0.0.1 can likewise be entered here.
Gatekeeper ID	It is also sufficient to specify only the Gatekeeper ID (see also the chapter entitled " <i>Administration/Gateway/General</i> ").
Name	The unique, descriptive H.323 name of the interface or registration.
Number	The unique E.164 call number of the interface or registration.
Password / Retype	The security of the registration can be raised by spe- cifying a password (Password). The password must be confirmed (Retype).
Supplementary Services (with Feature Codes)	A checked check box enables the use of additional fea- tures (Feature Codes). See description in the chapter entitled " <i>Administration/</i> <i>Gateway/General</i> ".

- **Dynamic Group** A *dynamic group* can be added to the H.323 registration. Groups can be configured as *static, dynamic-in* or *dynamic-out*. For members of static groups, calls are always signalled. It works differently for members of dynamic groups, which register with or unregister from a group dynamically using a function key (Join Group). The difference between *dynamic-in* and *dynamic-out* lies in whether the object is to be contained in the relevant group as standard (*in*) or not (*out*). See also description in the chapter entitled "*Administration/PBX/Objects*".
- **Direct Dial** Using *Direct Dial*, a call setup to the specified call number is initiated as soon as the handset is picked up. A conceivable scenario would be a lift emergency telephone that is connected with the security control room, for example.
- Locked White Here, you can specify a comma-separated list of call numbers that may also be dialled in the case of a locked telephone (for example, emergency services numbers, like 110, 911).

The entry fields for a **SIP** registration are:

Server Address (primary)	The IP address or the proxy server address of the SIP provider (for example sipgate.de, 217.10.79.9), to where the SIP messages (for example, register) are to be sent.
Server Address (secondary)	If the SIP provider has an alternative IP address or proxy server, then it can be entered here. In the event of failure of the primary server (for example, when maintenance is being carried out), the registration is then retained.
STUN Server	The STUN server name or IP address must be configured if the telephone uses a private IP address, but the SIP server is accessible under a public IP address. The value is given by the SIP provider or administrator (for example, stun.xten.com or 64.69.76.23). You can choose any STUN server; it does not necessarily have to correspond to the one of the SIP provider.

ID @	Here, you enter the user ID followed by the SIP provider domain name (for example, 811111e0@sipgate.de).
Display Name	The name you enter here, which corresponds to the part in front of the @ of the URI, is required for the registra- tion if the number (Account) was not specified (for example, 8111111e0).
Account	Likewise in this protocol, a call number is required for the registration, which corresponds to the part in front of the @ of the URI (for example, <code>8111111e0</code>).
Password / Retype	The password (Password) of the SIP Account must be specified and confirmed (Retype).
Supplementary Services (with Feature Codes)	See entry fields for an H.323 registration.
Dynamic Group	See entry fields for an H.323 registration.
Direct Dial	See entry fields for an H.323 registration.
Locked White List	See entry fields for an H.323 registration.

SIP interfaces (SIP1-4)

In addition to the ISDN interfaces (PPP, TEL1-4, BRI1-4, PRI1-4) and virtual interfaces (TEST, TONE, HTTP), there are also four SIP interfaces (SIP1-4), which can be used to obtain a trunk line from a SIP provider, for example. For a description of the entry fields, please refer to the description of the SIP registration above. There are, however, three further entry fields:

Name	A descriptive name for the interface.
Disable	Disables the relevant interface.

RegistrationCorresponds to the *Registration* entry field of the ISDN
interfaces.
After selection of H.323, the *Registration for H.323* sec-
tion is displayed, enabling registration of a SIP Account
with a local PBX (for example, innovaphone PBX).
After selection of SIP, the *Registration for SIP* section is
displayed, enabling in turn registration with a local SIP
PBX (for example, innovaphone PBX).

To obtain a trunk line from a SIP provider, you must proceed as follows:

- 1. Open one of the four SIP interfaces.
- 2. Enter SIP Account data (ID, STUN server, Account, password).
- 3. Under Registrations, link the SIP registration via H.323 to a PBX object of the *Trunk* type created beforehand (specification of the GK ID or GK address and the H.323 name or E.164 call number is sufficient).
- 4. Confirm with OK.

A successful registration is displayed in the overview page *Administration/Gate-way*/*Interfaces* as follows:

State (IP of the SIP provi- der)	Alias (PBX user object)	Registration (IP of the PBX)
For example, 217.10.79.9	H.323 name:E.164 no. SIPTrunk:8	> 127.0.0.1
(sipgate.de)		

In the example above, the trunk line of the SIP carrier *sipgate.de* is picked up using the *Trunk* PBX object with the name *SIPTrunk* and the call number *8*. The dialling of the call number 807031730090 therefore initiates a call at innovaphone AG via the configured SIP carrier.

Virtual interfaces (TEST, TONE, HTTP)

The non-configurable, internal interface **TEST** is only usable as the destination for a call. If a call is received on this interface, the music on hold contained in the non-volatile memory is played. Incoming calls must be in G.729A or G.723 format; other formats are not supported. Suffix dialling digits are ignored.

The internal interface **TONE** is only usable as the destination for a call. If a call is received on this interface, it is connected and the configured dial tone (**Tones**) is played. This happens particularly with **least-cost-routing** scenarios, where

the call can only be switched once some of the dialled digits have been analysed. In the meantime, the dial tone is played via the TONE interface. Suffix dialling digits are ignored. The TONE interface can process several calls.

The non-configurable, internal interface **HTTP** is only usable as the destination for a call. If a call is received on this interface, music on hold, an announcement or some other spoken information is played from a Web server. The configuration only makes sense in combination with the innovaphone PBX.

4.2.2.2.2 CGPN/CDPN Mappings

For every interface, it is possible to store so-called CGPN In, CDPN In, CGPN Out and CDPN Out mappings (Calling Party Number In, Called Party Number In, Cal-ling Party Number Out, Called Party Number Out), enabling call numbers and call number formats to be adjusted for incoming and outgoing calls. The call number formats are as follows:

Unknown	Unspecified. Number called in outgoing calls.	u	
Subscriber	Call number in local network. Number called in incoming calls.	S	
National	Call number with area code. Calling number from home country.	n	0
International	Call number with country code and area code. Calling number from abroad.	i	00
Abbreviated	Unusual.	а	
Network-spe- cific	Unusual.	х	

Clicking the link \neq or a mapping already created (for example, $n \rightarrow 0$) opens a popup page, on which the setting for the CGPN In, CDPN In, CGPN Out and CDPN Out mappings can be made:

CGPN In	Is used to process the calling number of incoming calls.
CDPN In	Is used to process the called number of incoming calls.
CGPN Out	Is used to process the calling number of outgoing calls.
CDPN Out	Is used to process the called number of outgoing calls.

Each mapping can be specified for a particular call number type:

Unknown The mapping applies to unknown, external calls.

ISDNThe mapping applies to external calls.PrivateThe mapping applies to internal calls.

4.2.2.3 Administration/Gateway/VOIP

Below is an overview of all the gateway's configurable VoIP interfaces:

Interface	The name of the interface. Clicking this name opens a popup page, on which all settings can be made. The settings are described in more detail in the following chapter "Administration/Gateway/VOIP/Interface (VoIP interfaces)".
CGPN In, CDPN In, CGPN Out, CDPN Out	Precise details on CGPN In, CDPN In, CGPN Out and CDPN Out mappings are contained in the chapter entitled " <i>Administration/Gateway/Interfaces/CGPN-CDPN Mappings</i> " further up in the text.
Registration	If a terminal has successfully registered with a gateway, then this is indicated in this column through specification of the IP address <i><name address="" interface:call="" number:ip="" of="" the="" voip=""></name></i> .

4.2.2.3.1 Interface (VoIP Interfaces)

Clicking the relevant VoIP interface (*GW1-12 <Name of the VoIP interface>*) in the **Interface** column opens a popup page, on which the VoIP interfaces can be individually configured. Like the PBX objects, this popup page also contains standard entry fields that occur, more or less, in all VoIP interfaces.

These standard fields are:

Name	The descriptive name of the VoIP interface.
Disable	A checked check box disables the relevant VoIP interface.
Protocol	The protocol to be used, that is, <i>H.323</i> or <i>SIP</i> . Depending on which protocol is used, the set-up of the entry fields changes.

Describes the mode of registration. Possible registration modes are:1. Gateway without Registration - Logs the VoIP interface (gateway) on to the configured gatekeeper without a registration.
 Register as Endpoint - Registers a VoIP terminal with the configured gatekeeper. Register as Gateway - Registers a VoIP gateway with the configured gatekeeper. Gatekeeper/Registrar - Is required for managing all gatekeeper registrations on a gateway. ENUM - Is used to register an ENUM connection with the relevant interface.
The primary Gatekeeper IP address at which the terminal or gateway is to register via the relevant interface. Only necessary for modes 2 and 3 .
The alternative gatekeeper IP address at which the ter- minal or gateway is to register via the relevant interface, if registration with the primary gatekeeper fails. Only necessary for modes 2 and 3.
By specifying a network mask, incoming calls can be filtered. Specification of the network mask $255.255.0.0$ therefore allows incoming calls on the relevant interface for terminals from the IP address range $192.168.0.0$ - $192.168.255.255$.
It is also sufficient to specify only the gatekeeper ID. Every gatekeeper in a network can be identified by means of its own gatekeeper ID, so that several gatekee- pers can be operated in a network, with each terminal nevertheless identifying the correct gatekeeper by means of Gatekeeper Discovery (uses the multicast address 224.0.1.41).

In the **Authorization** section, you can store a password for the VoIP interface.

Password /	The security of the registration can be raised by spe-
Retype	cifying a password (Password). The password must be
	confirmed (Retype).

In the **Alias List** section, you specify the call name (H.323) and the call number (E.164) of the relevant registration. For VoIP end points, you should define the assigned direct dialling number or MSN as the E.164 address, and the name as the H.323 name. For VoIP gateways it is sufficient to define the name.

Name	The H.323 name.
Number	The E.164 call number.

The standard entry fields in the **Coder Preferences** section were already described in chapter "*Administration/Gateway/Interfaces/Interface (physical and virtual interfaces)*".

In addition to the standard fields, several advanced settings are available in the **H.323 Interop Tweaks** section. They are normally not necessary and are merely used to solve compatibility problems with some PBXs:

No Faststart	The H.245 faststart procedure is enabled as standard. Outgoing calls are made with faststart, incoming calls with faststart are answered with faststart. A checked check box disables the H.245 faststart proce- dure. Outgoing calls are made without faststart, inco- ming calls with and without faststart are answered without faststart.
No H.245 Tunne- ling	The H.245 tunneling procedure is enabled as standard. The voice data connection is negotiated in the TCP signalling connection ^a already available. This can be advantageous in connection with NAT and firewalls. A checked check box disables the H.245 tunneling proce- dure, meaning that a separate TCP connection is set up for this negotiation. This applies to the signalling connec- tion leading out of the gatekeeper.
Suppress HLC	A checked check box disables the transmission of HLC (H igh L ayer C ompatibility) information elements.
Suppress FTY	A checked check box disables the transmission of FTY (F acili ty) information elements.

Suppress Sub-
addressA checked check box disables the transmission of Sub-
address information elements.

From a technical viewpoint, the H.245 protocol does not establish its own TCP connection, but shares the H.225 TCP connection.

4.2.2.3.2 CGPN/CDPN Mappings

A detailed description may be found in the chapter entitled "Administration/Gateway/Interface/CGPN-CDPN Mappings".

4.2.2.4 Administration/Gateway/Routes

The most important task of the gateway is call routing. It determines which calls are accepted and where they are switched to.

Call routing is carried out by the gateway's gatekeeper and is controlled by routes (for voice). For each call direction, a route must be defined. If a call passes several gateways, a relevant route must be defined in each one. A route defines a permitted path for a call, from the interface where the call arrives, to the interface from which the call departs. Calls from different interfaces are often handled in the same way. Therefore, calls from several ISDN interfaces (for example, TEL1 and TEL2) or from several VoIP interfaces (GW1-12), for example, can be permitted.

Call switching also often depends on the call number dialled. For this, the validity of routes for calls with particular destination numbers must be defined by means of a map entry. Each map entry defines that calls from the source interfaces specified in the route beginning with the combination of digits specified in the map entry can be connected to the destination interface defined in the route.

All defined routes are displayed row by row in the routing table. For each individual call, the routing table is searched from top to bottom for a suitable map entry. If it is not possible to switch the call to the identified interface, then the routing table is searched for the next map entry that meets the specified conditions. If a map entry was found, the current call is switched to the destination interface of the map entry defined. If no suitable map entry was found, the call is invalid and is not put through.

4.2.2.4.1 From - To

The routing table is structured as follows:

- **From** The source interface from which a call is to be accepted. It may be an ISDN interface (TEL, BRI, PRI, etc.) or a VoIP interface (GW1-12).
- **To** The destination interface to which a call is to be switched. It may be an ISDN interface (TEL, BRI, PRI, etc.) or a VoIP interface (GW1-12).
- **CGPN Maps** The CGPN (**C**alling **P**arty **N**umber) map is used for modifying the calling number. It allows the extension to be suppressed for outgoing calls, for example, but also the entire map entry can be made dependent on the calling number.

To create a new routing entry, you must click the *Insert Route below* button. A popup page opens, on which the route setting can be made.

This popup page also contains the specification of the map entries. Clicking the *Add Map above/below* buttons opens the same popup page and adds a map entry at the relevant place. This popup page is structured as follows:

Description The descriptive name for the route.

Source Here, you select the ISDN or VoIP interface that is to apply as the source for the relevant route. It is also possible to select several sources. The source interfaces available in principle are: *RT, RS, TEL, BRI, PRI, PPP, TEST, TONE, HTTP, SIP* and *GW*.

Number In	To make the routing decision dependent on a map entry, you must enter the calling number here. If no number is specified here, the map entry is valid for all calls. There are additional variants of call number manipulation available: If a route is to apply to a particular number and all of the digits that are subsequently dialled are to be ignored, the specified call number must be followed by the "!" operator. Some devices require the "#" operator as the signalling character for the end of a call. For this, the <i>Add</i> # check box can be checked (see description further down in the text). With the "?" operator, it is also possible to replace a variable unknown and known number of characters by a particular one. For example, "???" replace with 1 gives, say for "1234" -> "14", since the known digit 0 is likewise replaced. With the "." operator, a particular number of characters can be replaced. For example, "" replace with "123" gives, say for "321" -> "123".
Number Out	Here, you enter the route's call number to be replaced, if desired. If the call number is to be adopted unchanged, the same call number as in <i>Number In</i> must be specified here. Note: If the calling number was manipulated, the <i>Verify CGPN</i> check box must not be checked, since the checking of the calling number would fail, making the map entry ineffective.
Destina- tion inter- face	Here, you select the interface that is to apply as the destina- tion for the relevant route. The destination interfaces available in principle are: <i>RT, RS, TEL, BRI, PRI, PPP, TEST, TONE, HTTP,</i> <i>SIP, GW, MAP and DISC.</i>
Name Out	If the H.323 call name is to be changed, the new call name can be entered here.
Cause (DISC)	If the DISC destination interface was selected, a so-called <i>dis-</i> <i>connection cause</i> (see Appendix C "ISDN error values") can be additionally specified, to obtain appropriate output on the ter- minal.

For every route definition, advanced settings can be made:

Add UUI	If manufacturer-specific data is to be transmitted in the signal- ling channel, for example, the URL for an announcement, then this URL (http://192.168.0.1/webdav) can be specified here.
Final Route	A checked check box simulates the end of the routes. If further routes are to follow, they are ignored.
Final Map	A checked check box simulates the end of the map entries. If further map entries are available, all further map entries are ignored.
Exclude from Auto CGPN	If the <i>Automatic CGPN Mapping</i> check box was checked in chapter "Administration/Gateway/General", the relevant route can be excluded from the automatic correction of all calling numbers by checking this check box.
Verify CGPN	The routing decision is normally made on the basis of the rou- tes themselves and the map entries defined in the routes. With a checked check box, the routing decision is made on the basis of the CGPN maps. This means that first the calling number is checked and, only if the calling number matches, is the routing table further processed and call switching, for example, takes place. Since this only applies to the verification and restriction of par- ticular numbers, no manipulation of the call number takes place here. In this way, access to a chargeable trunk line, for example, can be restricted to certain extensions (selective direct outward dialling). If the <i>Automatic CGPN Mapping</i> check box was checked in chapter " <i>Administration/Gateway/General</i> ", the check is app- lied to the number already corrected.
Interwor- king (QSIG)	A checked check box enables translation of H.323 or SIP to QSIG. Here, no translation from QSIG to H.323 or SIP takes place, rather, the transmission is transparent (is used where PBXs of the same kind are linked via VoIP).
Force Enblock	A checked check box enforces enbloc dialling. This means that if a map entry applies, all subsequently dialled digits are col- lected until more than four seconds have passed since the last digit was dialled.

Add #	A checked check box transmits the hash character (#) to mark the end of a call number. This is only required for terminals that do not recognise the end of the call number (such as Cisco terminals, for example).
Disable Echo Can- celler	A checked check box suppresses echo cancellation for the rele- vant map entry. This is normally only necessary if the connec- tion used as the voice connection is not to perform echo cancellation, as is the case with modems, for example.
Call Coun- ter max	If there is insufficient bandwidth available, a name can be entered in the <i>Call Counter</i> field, and the maximum number of calls permitted for the relevant route can be entered in the <i>max</i> field.

Clicking the name of a route (for example, TEL1:exchange) filters the display of the routes by the set interface. Clicking the name of the route a second time again shows the routes that are not associated. If, for example, several routes have been created for the TEL1 interface, then clicking one of the TEL1 interfaces hides all other routes that do not have TEL1 selected as the source or destination interface.

The adjacent arrow button (->) can be used to edit routes.

4.2.2.4.2 CGPN Maps

It is also often necessary to define routes depending on the calling number. Just as maps are added to routes, so-called CGPN maps must be added to the maps for this purpose. This not only allows calling numbers to be manipulated in order to suppress the extension for outgoing calls, for example, but also the entire map to be made dependent on the calling number.

The arrow button (\rightarrow) in the CGPN Maps column can be used to define and edit such maps.

Number In	The calling number. The CGPN map is valid if the inbound E.164 call number matches the call number or dial prefix set here.
Name In	The calling name. The CGPN map is valid if the inbound H.323 call name matches the name set here.
Number	Here, you enter the call number or dial prefix to be replaced

4.2.2.5 Administration/Gateway/CDR0-1

The transmission of the so-called CDRs (**C**all **D**etail **R**ecords) is disabled as standard (**Off**). After selection of a CDR type, the transmission of detailed CDRs is enabled, as are the relevant entry fields. To prevent data loss in the event of failure of the first CDR server (**CDR0**), it is possible to specify a second CDR server (**CDR1**).

Off CDR is disabled.

ТСР

- The device transmits the CDR entries via a TCP connection.
- In the **Address** field, you enter the IP address at which the TCP connection is to be set up.
- In the **Port** field, you specify the port to which the connection is set up.
- **SYSLOG** The CDR entries are transmitted to a syslog recipient (also referred to as syslogd, syslog server or syslog daemon), which is then responsible for their further evaluation or storage.
 - In the **Address** field, you enter the IP address of the syslogd server.
 - In the **Class** field, you enter the desired message class that will be responsible for further processing of the CDR entries.

- **HTTP** The CDR entries are transferred to a Web server, where they can be further processed. Each individual CDR entry is transferred as form data to the Web server in HTTP GET format.
 - In the **Address** field, you enter the IP address of the Web server that carries out further processing of the transmitted data.
 - In the **Path** field, you enter the relative URL of the form program on the Web server.

The device will make a HTTP GET request to the Web server on the entered URL, followed by the URL-encoded CDR entry. If, for example, a page named /cdr/cdrwrite.asp with a form that expects the log message in parameter msg exists on a Web server, then the value / cdr/cdrwrite.asp is entered. The device will then make a GET /cdr/cdrwrite.asp?event=syslog&msg=logmsg request to the Web server.

4.2.2.6 Administration/Gateway/Calls

In the **Calls** gateway overview page, all calls actively being made can be monitored. This is advantageous for diagnostic purposes in particular, since the existence of possible network problems, for example, is immediately visible (see **Coder**):

Interfaces	Display of the calling interface.
Protocol	Display of the protocol used on the calling side.
Coders	Display of the coder used on the calling side, for example, <i>G711AB(2,0,0).</i> The values in brackets have the following meaning, in order: <i>Round trip = Transit time of a data packet from A to B and</i> <i>back again.</i> <i>Jitter = Latency time (time interval from the end of an event</i> <i>up to the start of the response).</i> <i>Loss = Number of lost packets (packet loss).</i>
Number	Display of the called number.
State	Possible states: Alerting, Calling, Connected, Disconnecting.

4.2.3 Administration/Download

The configuration of the VoIP device can be backed up using this menu.

4.2.3.1 Administration/Download/Config

This function allows to save the current configuration of the VoIP device. When clicking the **Download** link, a popup page opens, in which it can be specified whether to save the configuration file as a txt file or immediately open it with an editor.

4.2.4 Administration/Upload

There are several ways to update the VoIP device.

Note

Detailed informations respectively the status display by the Ready LED while uploading files to the device can be found in the innovaphone knowledgebase article *"How to Reset IPXXX, factory default, led behaviour, tftp mode, clear config, gwload*" (http://www.innovaphone.com/inno-kb).

4.2.4.1 Administration/Upload/Config

This function allows you to load a saved configuration (see chapter entitled "*Ad-ministration/Diagnostics/Config Show*") onto the device.

By specifying path and file name of the configuration file to be loaded in the **File** field and then clicking the **Upload** button, the configuration file is loaded into the device.

Here, it is to be noted that the configuration file is loaded into the device's volatile memory. This means it is neither permanently backed up nor immediately operative. The device therefore must be briefly reset. More detailed information on resetting the device may be found in the chapter *"Administration/Reset*".

4.2.4.2 Administration/Upload/Firmware

This function allows you to manually upload a new firmware version onto the VoIP device. This can be automated by configuring an update server as described in the chapter "*Configuration/General/Update*". New firmware versions can be obtained from a certified innovaphone dealer or directly via the innovaphone homepage (http://www.innovaphone.com).

By specifying path and file name of the configuration file to be loaded in the **Firmware File** field and then clicking the **Upload** button, the configuration file is loaded into the device.

Whilst loading the new firmware, you are advised not to interrupt the loading procedure under any circumstances.

If the loading procedure is nevertheless interrupted, the device should under no circumstances be switched off afterwards. Rather the procedure should be repeated once the problem has been eliminated.

Take a look at the documents supplied with the new versions to find out whether new boot firmware also has to be loaded. If this is the case, it must be ensured (if specified) that the required sequence of boot code and firmware update is observed.

The new firmware is not activated directly. A reset must be performed to activate the new version. The **immediate reset** and **reset when idle** links are provided for this purpose. More detailed information on resetting the gateway is contained in the chapter entitled "*Administration/Reset*".

4.2.4.3 Administration/Upload/Radio

This function can be used to load a new radio firmware version onto the VoIP device. New radio firmware versions can be obtained from a certified innovaphone dealer or directly from Kirk.

By specifying path and file name of the radio firmware to be loaded in the **Radio File** field and then clicking the **Upload** button, the radio firmware is loaded into the device.

It is necessary to ensure that all active calls are terminated as soon as the radio firmware is loaded onto the device.

Whilst loading the new radio firmware, you are advised not to interrupt the loading procedure under any circumstances.

If the loading procedure is nevertheless interrupted, the device should under no

circumstances be switched off afterwards. Rather the procedure should be repeated once the problem has been eliminated.

The new radio firmware is not activated directly. A reset must be performed to activate the new version. The **immediate reset** and **reset when idle** links are provided for this purpose. More detailed information on resetting the device is contained in the chapter entitled "Administration/Reset".

4.2.4.4 Administration/Upload/Boot

This function can be used to load a new boot code version onto the VoIP device. New boot code versions can be obtained from a certified innovaphone dealer.

By specifying path and file name of the boot code firmware to be loaded in the **Boot File** field and then clicking the **Upload** button, the boot code firmware is loaded into the device.

Whilst loading the new boot code firmware, you are advised not to interrupt the loading procedure under any circumstances.

If the loading procedure is nevertheless interrupted, the device should under no circumstances be switched off afterwards. Rather the procedure should be repeated once the problem has been eliminated.

The new boot code is not activated automatically. A reset must be performed to activate the new version. The **immediate reset** and **reset when idle** links are provided for this purpose. More detailed information on resetting the device is contained in the chapter entitled "*Administration/Reset*".

Take a look in the documents supplied with the new versions to find out whether new protocol firmware also needs to be loaded.

4.2.5 Administration/Diagnostics

The **Diagnostics** menu can be used to monitor the operating state of the device.

4.2.5.1 Administration/Diagnostics/Logging

Using the **Syslog** link, the log messages of the device can be viewed directly in active operation. The messages are continuously automatically updated and are scrolled upwards, out of the window.

Only messages that were enabled in the Logging submenu are displayed. The

following settings can be enabled:

TCP PPP Relay Calls	All TCP connections. All PPP connections. All calls that go via the Relay – only visible for devices with S_0 or S_2m interface.
Relay Routing	All calls that must be routed via the Relay – only visible for devices with S_0 and S_2 m interface.
DECT master	All DECT master connections – only visible for IP DECT systems.
DECT radio	All DECT radio connections – only visible for IP DECT systems.
H.323 Registrati- ons	All H.323 registrations.
SIP Regi- strations	All SIP registrations.
Config Changes	All configuration changes.
TEL1-n	All TEL1-n connections – only visible for devices with TEL interface.
PPP	All PPP connections – only visible for devices with PPP inter- face.
BRI1-n	All BRI1-n connections – only visible for devices with BRI interface.
PRI1-n	All PRI1-n connections – only visible for devices with PRI interface.

Clicking *OK* saves the settings made.

4.2.5.2 Administration/Diagnostics/Tracing

Using the **trace (buffer)** link, the trace information of the VoIP device can be viewed and saved. In the process, a text file *log.txt* is generated, which displays the current trace in a new browser window.

Using the **trace (continuous)** link, the continuous trace information of the device can be viewed and saved. In the process, a text file *clog.txt* is generated, which displays the current trace in a new browser window. As already mentio-

ned, the messages are continuously automatically updated and are scrolled upwards, out of the window.

For both trace variants, only messages that were enabled in this menu are displayed. Not every section and not every setting is visible; this will depend on which device is being used.

DECT section:

System	Information on the DECT system.
Master	Information on the DECT master.
Radio	Information on the DECT radio.

Interfaces section:

PPP	Information on the PPP interface.
TEL1-n	Information on the TEL1-n interface.
BRI1-n	Information on the BRI1-n interface.
PRI1-n	Information on the PRI1-n interface.
prot	The prot check boxes after the individual interface settings give information on the protocol used.

VOIP section:

H.323/ RAS	Information on H.323 RAS.
H.323/ H.225	Information on H.323/H.225.
H.323/ H.245	Information on H.323/H.245.
H.323/ T.38	Information on H.323/T.38
H.323/ T.30	Information on H.323/T.30
SIP/Mes- sages	Information on SIP/messages.
SIP/ Events	Information on SIP/events.
SIP/T.38 DSP	Information on SIP/T.38. Information on DSP.

DSP con trol mes sages	Information on DSP control messages.
DSP data messages	Information on DSP data messages.
IP section:	
PPP	Information on the PPP protocol.
РРТР	Information on the PPTP protocol.
PPoE0-1	Information on the PPoE0/1 protocol.
DHCP0-1	Information on the DHCP0/1 server.
HTTPCLI ENT	Information on the HTTP client.
HTTPCLI ENT ver bose	Detailed information on the HTTP client.

Clicking *OK* saves the settings made.

4.2.5.3 Administration/Diagnostics/Config Show

Config Show enables the output of the current configuration of the VoIP device in text format.

The current configuration can also be saved in a file using the **Save Frame As** function (depending on the browser used). It is also possible to select (highlight) the entire text (Ctrl-A) and copy it to the Clipboard using the right mouse button and the context menu (or Ctrl+C). The configuration can now be copied into any text editor (Ctrl+V) and saved.

A configuration backed up this way can be fully or partially loaded again. In this way, the configuration can be backed up and restored, or reference configurations can be created and loaded onto a number of devices.

4.2.5.4 Administration/Diagnostics/Ping

It is possible to execute a **ping** on a particular destination host (**IP address**), since for test purposes it is often necessary to execute a ping command directly from the VoIP device. This makes it possible to check whether a network address

(PC, printer, telephone, etc.) is accessible. If an address is accessible, Reply from <host> is displayed to the sender. If the address is not accessible, No Reply from <host> is displayed.

4.2.6 Administration/Reset

In addition to reset the device by the hardware reset button, there are three more ways given by the webbrowser, to reset the VoIP device.

Note

Informations to the reset function respectively the hardware reset button on device are contained in Appendix A *"Connectors and control elements*" inside Table 1 *"Indicators and Connectors*" (*"Reset*").

More detailed informations can be found in the innovaphone knowledgebase article *"How to Reset IPXXX, factory default, led behaviour, tftp mode,clear config,gwload* (http://www.innovaphone.com/inno-kb/).

4.2.6.1 Administration/Idle Reset

With an **Idle Reset**, the VoIP device is reset as soon as no more active calls are being carried out.

4.2.6.2 Administration/Reset/Reset

With a normal **Reset**, the device is immediately reset. All active calls are lost.

4.2.6.3 Administration/Reset/TFTP

With a **TFTP Reset**, the VoIP device is transferred to TFTP mode. In this mode, the device can only be accessed with the GWLoad tool and thus allocated an IP address. Further information on the innovaphone GWLoad tool may be found in the innovaphone Knowledgebase.

Appendix A: Connectors and control elements

Indicators and connectors

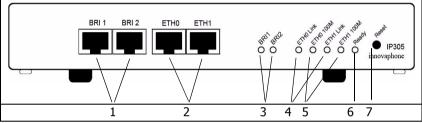


Fig. 1 - Indicators and connectors of the IP305

Pos.	Symbol	Description and function	
1	BRI1-2	ISDN-Socket (basic-rate-interface) for connecting an ISDN device or terminal equipment.	
2	ETH0-1	RJ45-socket for connecting a 100 Mbps Ethernet (10/ 100Base-T auto sense).	
3	BRI1-2 LED	LED to indicate the internal power supply for the seperate interface is active.	
4	ETH0-1 Link	LED to indicate that data is being sent or received on the ETH0/1 interface. This applies analogously to all other LEDs.	
5	ETH0-1 100M	LED to indicate that the 100 Mbps network for the ETH0/1 interface is active.	

6	Ready	Three color LED that indicates the status of the
		device.
		LED off means, waiting for action (for example reset).
		Green LED means the device is ready for operation.
		Green fast blinking LED means config clear or firm-
		ware/bootcode update.
		Orange LED means the device is in TFTP-Mode
		Red LED means the device has an error or is reboo-
		ting.
		Red fast blinking LED means firmware/bootcode
		upload.
		See also description to "Reset" in Table 1 "Indicators
		and connectors of the IP305°.
7	Reset	In addition to reset the device by the webbrowser,
		there are three (four) more ways given by the reset
		button, to reset the device.
		Short Reset: A short reset is restarting the device.
		Doing this will disrupt all active calls.
		Middle Reset (TFTP-Reset): The device is moving
		into TFTP-Mode, if holding the reset button until the
		Ready LED is blinking one-two times and then loose
		holding of the reset button.
		All ISDN-LEDs will be deleted and the Ready LED will
		be displayed in orange.
		Long Reset (Factory-Reset):
		Holding the reset button a longer time the Ready LED
		will blink 4-6 times and change to red. If loosing the
		hold on the reset button now, the deletion of the con-
		figuration is beginning. The Ready LED will be dis-
		played 5 seconds in red and after that it will start to
		blink very fast in red-green and delete the display of
		all ISDN-LEDs. The device will go into TFTP-Mode and
		the Ready-LED will be displayed in orange.
		Power-Cycle: Means to disrupt the device from the
		power supply. Works technically and visually like the
		short reset.
Table 1	Indicators	and connectors of the ID205

Table 1Indicators and connectors of the IP305

Note

Informations respectively the software reset function by the webbrowser are contained in chapter *"Administration/Reset*".

More detailed informations can be found in the innovaphone knowledgebase article *"How to Reset IPXXX , factory default, led behaviour, tftp mode,clear config,gwload* (http://www.innovaphone.com/inno-kb).

The serial number label

The serial number label may be found on the device packaging and on the underside of the housing.

Fig. 2 - Serial number label of the IP305

The MAC address is also the serial number of the IP305.

The first three constant hexadecimal digits separated by a hyphen (`-') are innovaphone's manufacturer identification code (009033 or 00-90-33), whilst the last three hexadecimal digits (001504 or 00-15-04) are the consecutive serial number of your IP305.

Appendix B: Troubleshooting

In our experience, some problems occur more frequently than others. These problems are listed in Table 2 below, which also gives advice on how to solve them.

Typical problems

Symptom	Description	Action
The VoIP device does not respond. Ready , Link and 100M . LEDs are permanently on.	The VoIP device is waiting for a firmware download.	 Perform a quick reset by pressing the Reset button.
The VoIP device does not respond. Ready LED is on, Link LED flashes irregularly.	The Ethernet connection is not working.	Check the Ethernet cabling.
The VoIP device does not respond. Ready and Link LEDs are on, 100M . LED flashes during attempted access.	The VoIP device has an incorrect IP address configured.	Set the IP parameters correctly.
In the as-shipped state, the VoIP device does not assign an IP address to the PC.	When the device is turned on, the DHCP client is active.	Press the Reset button briefly.Have an IP address assigned to the PC again.
Calls can be established to a remote VoIP device, but no communication is possible.	The required bandwidth for the transfer of the voice data is not available.	Configure a more efficient voice coding for the remote VoIP device.
Calls can be set up to a remote VoIP device, but no voice connections can be established.	The media channel cannot be set up, since the two VoIP devices do not have a common voice encoder.	 Make sure that the "<i>exclusive</i>" check box is disabled.

Calls can be set up to a remote VoIP device, but no voice connections can be established.	The media channel cannot be set up, since the two VoIP devices do not have a common voice encoder.	 Only the media channel is set up directly between the two VoIP devices; all signalling connections are operated via the gatekeeper. Make sure that both VoIP devices have a correct IP routing configuration, in particular subnet mask and standard gateway.
Calls to a remote telephony gateway are constantly rejected.	The device does not support overlapped sending.	 Add a hash (#) to the dial prefix of the route leading to this gateway to force en-bloc dialling.
The VoIP device loses its configuration after it has been disconnected from the power supply.	The configuration has not been saved in the non- volatile memory.	 Save the configuration to the non-volatile memory each time you make any changes.
The VoIP device is connected to the network behind a firewall and the configuration is not working.	The firewall does not allow access to the VoIP device.	Enable VoIP device access for the service tcp/80 (http) in the firewall.
The VoIP device is connected to the network behind a firewall and no connections to other VoIP devices can be established.	The firewall does not support the H.323 protocol.	 Enable "<i>H.323 Firewalling</i>" in your firewall software and, if necessary, "<i>H.323</i> <i>NAT</i>". Refer to your firewall documentation for this purpose. See chapter "<i>NAT and</i> <i>firewalls</i>" for more information.

Table 2 Troubleshooting

NAT and firewalls

If there is a firewall protecting your network from the Internet and connections

are to be set up to remote terminals via the Internet, then appropriate configuration of the firewall must be ensured.

Firewalls normally have two jobs. They control access to devices and network areas within your network and they implement the IP address translation in networks that do not have their own regular network address (NAT). NAT can also be implemented by routers.

In connection with Voice over IP, both functions require a detailed analysis of the data stream in order to be implemented. This must be performed by the firewall or router firmware.

If the product you are using does not have H.323 firewalling, there are two ways of proceeding:

Release the path in the firewall for all required data to and from the VoIP device.

Although this solution is usually not well received by network administrators, it does not present a security problem, since the VoIP device, as a dedicated device, does not perform any services other than Voice over IP. No security gaps are caused in a network by opening the path to and from the device.

The number of ports to be released can be restricted if the H.323 devices whose data is to cross the firewall are all innovaphone devices.

The following ports must be released in both directions:

- Tcp: destination port 80 (http), any source port, for configuration
- Tcp: destination port 1720 (h.225), any source port for VoIP calls
- Udp: destination port >= 2050, source port 5004 and 5005 (RTP), for VoIP calls

The following ports should also be released if the RAS protocol is used:

- Udp: destination port 1718
- Udp: destination port 1719
- Udp: source port 1719

The number of ports to be released cannot be restricted if the device has to communicate with third-party products. It is thus necessary to release all ports to and from the device.

 The device is placed in front of the firewall, so that the data stream does not have to pass the firewall. In this case, you will not be able to set up any voice connections from within the network to the device (for example, with innovaphone Softphone PCs).

If the network is operated in NAT mode and the product you are using does not support H.323 NAT, then it is not possible to operate beyond the firewall.

VoIP and heavily loaded WAN links

If voice data is transmitted over heavily loaded, narrowband WAN links, the voice quality can be affected if the respective links can no longer ensure adequate transmission quality.

Prioritisation of voice data on the WAN links can help here. This can usually be achieved by the routers used.

Direct use can be made of the "*Prioritisation of H.323 voice data*" function, if it is supported by your router.

If you router is able to prioritise on the basis of the ToS field (Type of Service), you can use this function. The VoIP device sets the ToS Priority field to the value 0×10 for all IP packets that it sends. This value can be changed, if necessary, under the chapter "*Configuration/IP/Settings*".

Тір

You can specify hexadecimal, octal or decimal values: the entries $0 \times 10,020$ and 16 are all equivalent. The value set for the ToS Priority field should be the same on all used devices.

If this is not the case, the function "*Prioritisation according to source/destination address*" can be used, if available. In this way, data packets from and to the device are prioritised. This in effect corresponds to the prioritisation of voice data as above.

In any case, the maximum size of packets transmitted over the WAN link (often referred to as **MTU size**) should be restricted to a value smaller than 800 bytes. This ensures that, in spite of the prioritisation of voice data, larger data packets

do not block the line for an extended period of time during transmission.

Some routers are able to prioritise but are unable to interrupt the transmission of larger packets once it has started. This can result in poor quality in spite of prioritisation. In such a case, you should check whether this interruption can be separately enabled. Some routers refers to this function, somewhat confusingly, as **interleaving**.

Anhang C: ISDN-Errorcodes

The following table shows the isdn errorcodes after Q.931 standard:

Error- code (hex)	Error- code, Bit 8 to 1 setted (hex)	Error- code (dezimal)	Meaning
0x1	0x81	1	Unallocated number
0x2	0x82	2	No route to specified transit net- work
0x3	0x83	3	No route to destination
0x6	0x86	6	Channel unacceptable
0x7	0x87	7	Call awarded and being delivered in an established channel
0x10	0x90	16	Normal call clearing
0x11	0x91	17	User busy
0x12	0x92	18	No user responding
0x13	0x93	19	No answer from user (user aler- ted)
0x15	0x95	21	Call rejected
0x16	0x96	22	Number changed
0x1A	0x9A	26	Non-selected user clearing
0x1B	0x9B	27	Destination out of order
0x1C	0x9C	28	Invalid number format
0x1D	0x9D	29	Facility rejected
0x1E	0x9E	30	Response to STATUS ENQUIRY

0x1F	0x9F	31	Normal, unspecified
0x22	0xA2	34	No circuit/channel available
0x26	0xA6	38	Network out of order
0x29	0xA9	41	Temporary failure
0x2A	0xAA	42	Switching equipment congestion
0x2B	0xAB	43	Access information discarded
0x2C	0xAC	44	Requested circuit/channel not available
0x2D	0xAD	47	Resources unavailable, unspeci- fied
0x31	0xB1	49	Quality of service unavailable
0x32	0xB2	50	Requested facility not subscribed
0x39	0xB9	57	Bearer capability not authorised
0x3A	0xBA	58	Bearer capability not presently available
0x3F	0xBF	63	Service or option not available, unspecified
0x41	0xC1	65	Bearer capability not implemen- ted
0x42	0xC2	66	Channel type not implemented
0x45	0xC5	69	Requested facility not implemen- ted
0x46	0xC6	70	Only restricted digital informa- tion bearer capability is available
0x4F	0xCF	79	Service or option not implemen- ted, unspecified
0x51	0xD1	81	Invalid call reference value

0x52	0xD2	82	Identified channel does not exist
0x53	0xD3	83	A suspended call exists, but this call identity does not
0x54	0xD4	84	Call identity in use
0x55	0xD5	85	No call suspended
0x56	0xD6	86	Call having the requested call identity has been cleared
0x58	0xD8	88	Incompatible destination
0x5B	0xDB	91	Invalid transit network selection
0x5F	0xDF	95	Invalid message, unspecified
0x60	0xE0	96	Mandatory information element missing
0x61	0xE1	97	Message type non-existent or not implemented
0x62	0xE2	98	Message not compatible with call state
0x63	0xE3	99	Information element non-exi- stent or nor implemented
0x64	0xE4	100	Invalid information element con- tents
0x65	0xE5	101	Message not compatible with call state
0x66	0xE6	102	Recovery on timer expiry
0x6F	0xEF	111	Protocol error, unspecified
0x7F	0xFF	127	Interworking, unspecified

Appendix D: Support

If needed to enlist the support of a dealer, the following information should be ready:

- The full version details of the device. These details may be found on the welcome page of the device (see chapter entitled "*Configuration/General/Infd'*).
- A trace showing the error situation (see chapter entitled "Administration/ Diagnostics/Tracing").
- The entire configuration as displayed by **Config Show** (see chapter entitled "*Administration/Diagnostics/Config Show*").

• The serial number, which may be found on the serial number label on the underside of the housing or on the welcome page of the device (see Appendix B "*Connectors and control elements*" or chapter "*Configuration/General/Infd*").

Firmware upload

The innovaphone VoIP devices are not delivered with the latest firmware, which means that a firmware upload is usually necessary.

New firmware versions can be obtained in the download area (http://download.innovaphone.com) of the innovaphone homepage.

innovaphone homepage

The innovaphone homepage (http://www.innovaphone.com) contains all current service packs, boot codes, hot fixes, firmware updates, manuals, datasheets, etc. It is also possible to request the innovaphone newsletter to stay up to date with current innovaphone news.

In future, it will be possible to make complaints online via the innovaphone homepage. This enables a simpler and faster processing procedure.

Appendix E: Configuration of the update server

It is possible to update the firmware and configuration of a large number of innovaphone devices in a distributed environment by automated means.

This is done by storing the configuration and firmware information on a standard Web server, which in turn is called up the individual devices.

There are two modules in the device which work in tandem. The first is known as "UP0" and acutally executes the upload and download of configuration information as well as the download of updated firmware. UP0 is controlled by commands as detailed below.

The second module is known as "UP1". It serves to poll a given website for changed configuration information. If certain conditions are met, UP1 will issue commands to UP1 to perform the requested updates.

System requirements

- One or more Web server(s) accessible by the devices.
- The Web servers tested were MS IIS and the Apache server. It should, however, also work with all other common Web servers.
- For best results, the Web server should be able to manage a large number of simultaneous HTTP sessions. MS Personal Web Server, for example, is not a suitable Web server, since it manages a maximum of 10 simultaneous HTTP sessions.

Installation

To be able to transfer device configurations onto the Webserver, the latter must allow HTTP PUT requests. All other functions require HTTP GET authorisation.

Since all HTTP requests are executed unauthenticated, the Web server must allow anonymous reading and possibly also anonymous writing.

To allow HTTP PUT commands on a MS IIS, the *read* and *write* check box must be enabled in the configuration of the relevant virtual directory.

Configuration

Detailed information on how the URL parameter of the update server is

configured on the innovaphone devices may be found in the chapter entitled "*Configuration/General/Update*".

Note here that the URL parameter must point precisely to the location of the file with the contained maintenance commands. It is also to be noted that this URL (just like all other URLs used by innovaphone devices) does not support host names. Therefore, a valid IP address always has to specified.

If the URL happens to end with a '/', then a standard file name based on the product description is used. If, for example, the URL is http://l.2.3.4/configs/ , then it is extended in the case of an IP1200 as follows: http://l.2.3.4/configs/update-ip1200.htm . The product name is specified in the first line in chapter "Configuration/General/Info". The file extension is irrelevant here. The extension *.txt or *.htm or no file extension at all is possible. In relation to URL specifications, note that some Web servers differentiate between upper case and lower case letters.

Running maintenance

The update file is immediately read and also immediately executed. After a device restart, the update server is automatically queried periodically in accordance with the interval set.

When the maintenance file has been successfully received, it is executed sequentially. Theoretically, all commands that can be transmitted to the device in a Telnet session or that occur in a configuration file can be used in the maintenance file.

Maintenance commands

Additional commands implemented specially for the update server are available.

The maintenance file is executed every time (depending on the interval set), as soon as it is received.

Check command

In most cases, however, the maintenance file should be executed not every time as soon as it is received, but once only. Assuming that a secure configuration is to be loaded onto several devices, then it is best if this is done from one device. This can be achieved with the **check** command:

mod cmd UP1 check <final-command> <serial>

innovaphone

innovaphone devices have an internal variable that is initially empty (or empty if the device was reset with the standard settings) called UPDATE/CHECK. The check command compares the content of <serial> with the UPDATE/CHECK variable. If both match, all further processes of the maintenance file are terminated.

If they differ, the remaining processes are executed. When the last process has been executed, the UPDATE/CHECK variable is overwritten with the content of <serial>, and the content of <final-command> is executed. The following commands are usable content for <final-command>

- ireset: Resets the device as soon as it is not being actively used.
- reset: Resets the device immediately.
- iresetn: Resets the device as soon as it is not being actively used and a reset is required.
- resetn: Resets the device immediately if a reset is required.
- ser: Is a global variable and not a function.

Time command

Often it is preferred to perform such changes at particular times (for example, at night when no work is being done). This can be achieved with the times command:

mod cmd UP1 time [/allow <hours>]

The time command compares the current time with the content of <hours>. <hours> is a comma-separated list of specified hours, within which execution of the maintenance file is possible. If the content of <hours> with the restriction does not match, all further processes are terminated. The following hours are considered valid times, within which execution of the maintenance file makes sense.

mod cmd UP1 time /allow 12,22,23,0,1,2,3,4

With this command, execution of the maintenance file is allowed from 12:00 to 12:59 hrs and from 22:00 to 04:59 hrs. If the device does not have a time, all processes are terminated.

mod cmd UP1 time [/allow <hours>] [/initial <minutes>]

If the /initial parameter is set, no further commands are executed within the specified number of minutes <minutes>, once the device has been reset. This was implemented to avoid a firmware download and the overwriting of Flash

memory during device installation.

mod cmd UP1 time /allow 12,22,23,0,1,2,3,4 /initial 6

With this specification, all processes of the maintenance file are suppressed within the first six minutes and within the valid times specified in the /allow parameter after every device restart. If the /initial parameter was set, new devices (or devices that were reset with the standard settings) can, after a restart, receive the maintenance file within the number of minutes specified in the /initial parameter, even if they lie outside the valid times as specified in the /allow parameter. This allows new devices to receive a current standard configuration quickly.

Prot command

To initiate a firmware update, the following command can be executed:

```
mod cmd UP0 prot <url> <final-command> <built-serial>
```

This command downloads new firmware (if available) from the specified URL onto the device. Finally, the <final-command> is executed.

innovaphone devices have an internal variable that is initially empty (or empty if the device was reset with the standard settings) called UPDATE/PROT. The prot command compares the content of <build-serial> with the UPDATE/PROT variable. If both match, no firmware is downloaded. If the UPDATE/PROT variable is not set (new devices or after a device restart), the content of <build-serial> is compared with the built number of the current firmware. Once the firmware has been successfully downloaded, the UPDATE/PROT variable is overwritten with the content of <build-serial> . Note that the <build-serial> parameter is not compared with the firmware version currently loaded. It is the responsibility of the administrator to keep this standard.

If the <url> parameter ends with a slash ('/'), a standard firmware file name is appended to the URL depending on the product description (for example, IP1200.bin for an IP DECT system).

mod cmd UP0 prot http://192.168.0.10/firm/ip1200.bin ireset
04-5656

The command

mod cmd UP0 prot http://192.168.0.10/firm/ ireset 04-5656

determines whether the firmware version 04-5656 was already installed. If this

innovaphone

is not the case, the current firmware is downloaded from the address 192.168.0.10/firm/ip1200.bin, the UPDATE/PROT internal variable is overwritten with 04-5656 and, finally, the device is reset as soon at it is not being actively used.

Boot command

With the **boot** command, the boot code is updated and this is done in the same way as with the **prot** command.

mod cmd UP0 boot <url> <final-command> <built-serial>

The command

```
mod cmd UP0 boot http://192.168.0.10/firm/ ireset 205
```

determines whether the boot code version 205 was already installed. If this is not the case, the current boot code is downloaded from the address 192.168.0.10/firm/bootip1200.bin, the UPDATE/BOOT internal variable is overwritten with the version number of the downloaded boot code (205) and, finally, the device is reset as soon as it is not being actively used.

SCFG command

If the **UPO** interface is being used, then the device configuration can be stored on a Web server.

mod cmd UP0 scfg <url>

This command instructs the device to upload its current configuration to the <url>. This can be achieved with the HTTP PUT command. The url must be writable. The following constants can be used in the url:

Sequence	Replaces	Example
#d	Current date and time	20051010-170130
#m	MAC address of the device	00-90-33-03-0d-f0
#h	Device hardware number	IP1200-03-0d-f0

Example

A Web server exists at the address 192.168.0.10 with a subdirectory called **configs**. In this directory, there are two further subdirectories, in which the current firmware files for all innovaphone devices are stored.

Clients provide the DHCP server with the option #215 as http://

192.168.0.10/configs/. In this directory, there is a file updateip1200.htm , which processes the following lines:

mod cmd UP1 times /allow 23,0,1,2,3,4 /initial 6
mod cmd UP0 scfg http://192.168.0.10/configs/saved/
#h.txt
mod cmd UP0 prot http://192.168.0.10/configs/04-5679 /
ser 04-5679
mod cmd UP1 check ser 20040330-01
config change PHONECFG0 /coder G729A,60, /lang eng /
protect
config change PHONEAPP0 /f4-10 BellOff /f4-v0 %1BE /f510 BellOn /f5-v0 %1BF
config write
config activate
iresetn

There is also the file update-ip3000.htm, which reads the following two lines:

```
mod cmd UP1 time /allow 23,0,1,2,3,4
mod cmd UP0 prot http://192.168.0.10/configs/04-5679 /
ser 04-5679
```

This example demonstrates how the configuration of a device is stored on a Web server; all IP1200 devices are then instructed to load/update the firware version 04-5679 in the time period 23:00 hrs to 04:59 hrs. New devices are updated after a restart and after the specified six minutes have elapsed. The devices are configured so that they use the G729 codec with a frame size of 60ms, the language setting is English and the configuration is write-protected. Therefore, only an administrator with appropriate authorisation can change this file. In addition, two standard functions were programmed for the device.

IP3000 devices are updated to firmware version 04-5679 in the time period 23:00 hrs to 04:59 hrs.

Appendix F: Configuration of an NTP server/ client

If a network does not have an NTP server, a public time server can be used. The TU Berlin, for example, provides a time service at the IP address

130.149.17.21. This service is a voluntary service, and no claims can be made with regard to its availability.

Any Windows server can operate as the NTP server. Equally, there are various NTP software packages for Windows and Unix/Linux platforms.

The innovaphone VoIP devices also work simultaneously as NTP servers. If several devices are being used, one device can synchronise with a time server (external if need be), and all other devices, in turn, can synchronise with this one device.

The VoIP device will then operate as the time service and will transmit the correct time to the other devices. The synchronisation of all devices with one external time service should be avoided, since this results in unnecessary high loads on these servers.

Further public time services can be found worldwide on the Internet at http://www.eecis.udel.edu/~mills/ntp/.

Timezone strings (TZ string):

Time services always provide the coordinated world time UTC (**U**niversal **T**ime **C**oordinated), which corresponds to GMT (**G**reenwich **M**ean **T**ime), not however the correct time zone and summer time. It is therefore possible to specify the time difference between the time zone and the world time in the **String** field. The difference from the time zone GMT+1 (Central European time zone) is 60 minutes. A further 60 minutes has to be added with summer time, adding up to a total difference of 120 minutes. In this case, however, you must adjust the time difference manually when switching from winter to summer time and vice versa.

If a so-called timezone string was entered in the **String** field, the device can make the switch from summer to winter time automatically. The name of the time zone, the name of the summer time zone, their respective differences in time compared to the UTC and the time switch points are encoded in this field.

There are various formats for the specification of this string. These formats are defined by the IEEE POSIX standard.

POSIX timezone strings have the following format (optional parts in square

brackets):

StdOffset[Dst[Offset], Date/Time, Date/Time]

Std stands for the time zone (for example, CET for Central European Time or MET for **Middle European Time**).

Offset specifies the time difference between the time zone and UTC, for example, -1 for Central European Time. The difference is negative if the time zone is ahead of UTC. If the time difference does not comprise full hours, the number of minutes can be added, for example, -1:30.

The TZ string ends here if you are not using a summer time.

Dst stands for the summer time zone (for example, CEST for Central European Summer Time or MES for Middle European Summer Time).

The optional, second **Offset** parameter gives the offset of the summer time in respect of UTC. An hour before normal time is assumed if no entry is made.

Date/Time, **Date/Time** define the start and end of summer time. The format for a time entry is Mm.n.d, signifying the a-th day of the n-th week of the m-th month. Day 0 is Sunday. If the fifth week is entered, the last day (with respect to d) of the month is meant. The format for a time entry is hh[:mm[:ss]], in the 24-hour format.

The Central European time zone which applies to Germany is specified as follows:

CET-1CEST-2,M3.5.0/2,M10.5.0/3

Further information on the POSIX standard can be called up on the Web at http://standards.ieee.org/catalog/olis/posix.html.

Appendix G: Instructions for downloading licences

Call up the page http://www.innovaphone.com/

<code>index.php?id=29&L=0</code>. The licence agreement is displayed, which must be confirmed with Yes.

Login

The login screen is then displayed. If no licences have yet been downloaded from innovaphone, the Help pages should be readed first.

Otherwise, enter a valid e-mail address in the E-mail field and a relevant password in the Password field.

Download

Whether if logged in correctly it's displayed in the upper part of the screen. The following text appears: "*Welcome you are logged in as Name { e-mail address }*".

Beneath this, in the empty *Serial number* field, the serial number (MAC address) of the device for which licences are required can be entered and searched for.

Clicking the *Download Licence* button downloads the licences.

Result

If clicking the download link, an "*Open With / Save As*" dialog box opens, in which it can specified whether to save the file on the local hard disk or open and view it immediately.

The licences are also administered automatically in the licence manager, so that they can be downloaded anew at any time.

License Manager

The License Manager gives the possibility to manage all licenses and activation keys.

Appendix H: Glossary

This glossary relates to all innovaphone gateways, including innovaphone DECT gateways:

A

A-law

The A-law method is a method for the dynamic compression of audio signals, which is described in the ITU G.711 recommendation. The dynamic compression improves the signal-to-noise ratio under equivalent transmission conditions. The method uses a logarithmic dynamic characteristic curve, which has high dynamics particularly at low input levels and very low dynamics at high input levels. This reduces the noise at low input levels, that is, for quiet sounds. The A-law method is used mainly in Europe; the USA uses a method that differs slightly in the quantisation levels, the μ -law method. This method is characterised by a dynamic characteristic curve that, in the low level range, is even steeper than that of the A-law method.

Alt sync master

An alternative synchronisation source.

ARI

An ARI (Access Rights Identifier) is a unique identifier for a DECT system.

ARP

The ARP protocol (Address Resolution Protocol) is a typical ES-IS protocol (End System - Intermediate System Protocol) used to covert the MAC addresses (Message Authentication Code) to the relevant IP addresses (Internet Protocol) to enable communication on the network layer using the IP protocol. The ARP protocol creates mapping tables for this purpose, which assign the MAC addresses to the network addresses.

Auto-MDX

The Auto-MDX function is the automatic detection of an uplink port on an Ethernet interface. No crossover cables are required with the Auto-MDX function, since the Ethernet interface can automatically switch the send and

innovaphone

receive line.

B

BRI

The basic access (BA), also referred to as the BRI interface (**B**asic **R**ate **I**nterface), is the standard access to the ISDN (**I**ntegrated **S**ervices **D**igital **N**etwork). A basic access offers two speech/data channels (B channels, derived from "bearer") each at 64 kbit/s and a signalling channel (D channel, derived from "data") at 16 kbit/s. The net bandwidth is: 2×64 kbit/s + 16 kbit/s = 144 kbit/s. The basic access is used mainly by private customers or smaller businesses; larger companies with a high level of telephone activity use the primary multiplex access.

Broadcast

A broadcast transmission is simultaneous transmission from a single point to all subscribers. In order to address particular classes of receivers or all connected stations simultaneously in a network, the possibilities of multicast or broadcast exist. In local networks, a broadcast is a message that is sent to all devices in all networks. It is forwarded by every router to all connected networks. If all terminals in a particular network are to be addressed, one refers to multicast or network broadcast.

С

CCFP

CCFP (**C**entral **C**ontroller **F**ixed **P**art) is a unit that controls all base stations. Previously (with the ip1500), the DECT base stations were connected via a proprietary interface with the CCFP using 2-wire cable.

With the IP1200, the DECT base stations are connected via IP with the CCFP interface. Every IP1200 has a DECT base station and a control unit. In a *multicell* installation, only one control unit of an IP1200 is used (also known as the IP master). All other DECT radios are controlled by it. The DECT radio in this master IP1200 can be used (usually it is used as a normal DECT radio; only if the IP DECT system uses more than 64 base stations, should

the DECT radio in the IP master not be used).

CDR

The term CDR (**C**all **D**etail **R**ecord) is used in relation to the recording of all connections in a database. The recorded data is available for subsequent activities, such as the calculation of connection charges or the network analysis. CDR files are used in fixed networks, in IP networks in relation to IP telephony and also in mobile networks. In selected virtual connections, CDRs contain the call number, the name of the remote communication computer, the date and time, the connection duration and the error messages.

CFB

With the ISDN feature CFB (**C**all **F**orwarding **B**usy), an incoming call is forwarded to a particular extension when the line is busy.

CFNR

With the ISDN feature CFNR (**C**all **F**orwarding **N**o **R**esponse), an incoming call is forwarded to a particular extension if the call is not accepted after a configured time.

CFU

With the ISDN feature CFU (**C**all **F**orwarding **U**nconditional), an incoming call is forwarded to a particular extension immediately.

CHI

An information element in GSM networks that specifies the channel to be used on the user network interface.

CR

Because, with ISDN, a terminal can control several connections simultaneously, the individual connections are uniquely identifiable through the connection identifier. Each connection therefore uses its own CR (**C**all **R**eference). For outbound connections, it is allocated by the terminal, for inbound connections by the network.

CTI

CTI (**C**omputer **T**elephony **I**ntegration) is a value-added service for raising efficiency in voice transmission. With this service, very simple applications, such as computer-aided call number dialling, through to complete call

centres can be offered as services. The purpose of CTI is to support the telephone service through computer technology. As well as the support of service features with their diverse switching functions, this includes management of the telecommunications system and the user accounts.

D

DECT

DECT (**D**igital **E**uropean or **E**nhanced **C**ordless **T**elecommunications) is a European standard for cordless telephony. DECT defines the air interface between the mobile hand device and the base station; voice transmission as well as data transmission are supported with flexible transmission speeds.

DECT base station

A DECT base station can set up a voice channel between an IP DECT telephone and the innovaphone PBX.

DECT controller

Short for CCFP (Central Controller Fixed Part).

DECT system

A collection of DECT radios with a control device. All DECT radios in this system share a usual identifier (the so-called ARI). A handover between DECT radios is only possible within the same IP DECT systems.

DHCP

The DHCP protocol (**D**ynamic **H**ost **C**onfiguration **P**rotocol) enables the dynamic assignment of an IP address and further configuration parameters to computers in a network (for example, Internet or LAN) using a relevant server.

DMS100

The obsolete DMS 100 protocol (**D**igital **M**ultiplex **S**ystem) of Northern Telecom (USA) is the forerunner of the NI-1 protocol.

DNS

The DNS protocol (**D**omain **N**ame **S**ystem) is a protocol for the conversion of IP addresses to domain addresses. It belongs to the group of name services, within which the long, complicated IP addresses represented in

DDN (**D**otted **D**ecimal **N**otation) are replaced by simple domain names. The conversion of IP addresses to a domain address can take place using host tables, as well as using the worldwide DNS, in which the name servers are set up hierarchically.

DSL

Using DSL (**D**igital **S**ubscriber Line), private households and companies can send and receive data at high transfer rates (1,000 to 16,000 kbit/s). This is a considerable improvement compared with modem or ISDN connections (only up to 64 kbit/s). No changes have to be made to the laid telephone line, since DSL uses the existing two to four copper wires of the telephone network on a different, higher frequency.

E

E.164

E.164 numbering is the most commonly used addressing standard in public communication networks. This call number schema forms the set of rules for the international call numbers.

The call numbers in E.164 comprise a maximum of 15 decimal places, which can be evaluated by public networks. Subscriber-specific call numbers and services can have a further 40 decimal places added. These are recorded only by private branch exchanges and end systems, however.

E-DSS1

The DSS1 protocol (**D**igital **S**ubscriber **S**ignalling System No. **1**) is at times referred to as the E-DSS1 protocol, where the "E" stands for Euro ISDN.

ENUM

ENUM (Telephone **Num**ber **M**apping) is a technique for standardising the various communication and telephone addresses. It applies to private and business telephone, fax and mobile phone numbers, as well as to Web pages, short message services, instant messaging and e-mail. The ENUM protocol links together the resources from the telecommunication networks and from the Internet, and defines how a telephone number is mapped on a domain address. The telephone numbers are integrated in the DNS (**D**omain **N**ame **S**ystem). For the conformance of the telephone numbers to the

international call number plan, there is the ITU E.164 standard.

F

FTY

FTY or FIE (**F**acility **I**nformation **E**lement) is the most important element in an ISDN for call signalling, registration and everything regarding the supplementary services.

5ESS

5ESS (**5**th version of AT&T's **E**lectronic **S**witching **S**ystem). Just as on the ISDN accesses that use the US national D channel protocol NI1, merely data transfers at a speed of 56 kBit/s (compared with 64 kBit/s for DSS1 and 1TR6) are possible. The remaining 8 kBit/s are used to transfer the control data, since the two protocols do not support a separate D channel. Furthermore, many of these accesses have only one B channel.

FTP

The FTP protocol (File Transfer Protocol) is used for file transfer between various systems and for simple file handling. FTP is based on the TCP transport protocol (Transmission Control Protocol), and supports the transfer of character-coded information and of binary data. In both cases, the user must have the possibility to specify the format in which the data is to be stored on the respective destination system. The file transfer is controlled from the local system; access authorisation for the destination system is checked for the connection setup by means of user identification and password.

G

GAP

GAP (Generic Access Profile) is the basic DECT profile and applies to all DECT portable and fixed parts that support the 3.1 kHz telephony service irrespective of the type of network accessed. It defines a minimum mandatory set of technical requirements to ensure interoperability between any DECT GAP fixed part and portable part. This profile has been established by ETSI as an important part of a set of DECT profiles. Every DECT device must support one or more profiles to be functional.

GMT

GMT (**G**reenwich **M**ean **T**ime) is the mean solar time at the Greenwich Meridian. GMT was the world time from 1884 to 1928. It has since been replaced in this function by the coordinated world time UTC (**U**niversal **T**ime **C**oordinated).

Η

Handover

The process that take place when a DECT handset switches from one DECT radio to another during a call.

Handset

A DECT handset is a cordless telephone.

HLC

HLC (**H**igh **L**ayer **C**ompatibility) is an information element in an ISDN, with which the protocols and parameters that are used in layers 4 to 7 of the speech/data channels are displayed.

H.225

H.225 is a signalling protocol standardised by the ITU-T (International Telecommunication Union-Telecommunications), which is used in H.323 networks and which supports the transfer of data, voice and video. The protocol is used for the connection setup and shutdown, as well as for connection control. Within the protocol, signalling is based on Q.931.

H.225 uses the RTP protocol for the real-time transfer of the multimedia data.

H.323

H.323 is an international ITU standard (International Telecommunication Union) for voice, data and video communication using packet-oriented networks, which defines the specific capabilities of terminals in the IP environment. H.323, which is functionally comparable to the SIP protocol, was developed for the transmission of multimedia applications and forms the basis for VoIP. Real-time communication in LANs is defined using this standard.

The H.323 standard consists of a whole series of protocols for signalling, the

exchange of terminal functions, connection control, the exchange of status information and data flow control. The standard has been revised several times; in the third version, it defines the transfer of features. The standard is derived from the H.320 multimedia standard for ISDN.

H.245

The H.245 protocol standardised by the ITU (International Telecommunication Union) negotiates terminal functions, the control of logical connections for the transfer of audio data, flow control and the transfer of further control messages in H.323 networks. In relation to the terminal functions, H.245 uses the setting of the voice encoding method, which must be identical to the compression method.

Ι

IEEE

The IEEE (Institute of Electrical and Electronics Engineers) is an association of American engineers dedicated to standardisation tasks. Work group 802, for example, is driving forward the standardisation of local networks.

IP

The task of the IP (Internet Protocol) is to transport data packets from a sender to a receiver across several networks. The transmission is packetoriented, connectionless and non-guaranteed. Even in the case of identical senders and receivers, the IP datagrams are transported by the IP as independent data packets. IP guarantees neither the observance of a particular sequence nor delivery to the receiver, that is, datagrams can be lost due to network overload, for example.

IPEI

DECT telephones (handsets) have such an IPEI number (International **P**ersonal **E**quipment Identity), which can also be regarded as a serial number and is used for identification in a DECT system.

IP master

The IP1200 that controls all other DECT base stations in an IP DECT system is often referred to as the IP master. It is possible that it is the same DECT

base station as the sync master.

ISDN

ISDN (Integrated Services Digital Network) was conceived as a communication network for voice transmission (recognisable from the transmission speed of 64 kbit/s), and has emerged from the analogue telephone network. The digital transmission enables text, graphics and voice data to be handled in the same way. Just as in the analogue telephone network, ISDN uses line switching, and a transparent, physical, end-to-end connection is set up if necessary. The result is virtually a physical line between the communicating end-subscribers, which is switched through in the individual ISDN exchanges.

ITU

The ITU (**I**nternational **T**elecommunication **U**nion) is an organisation operating worldwide, in which governments and the private telecommunications sector coordinate the setting up and operation of telecommunication networks and services.

J

Jitter

Jitter refers to the phase fluctuations in data transmission, and therefore changes in time of signal frequencies. It concerns fluctuations of fixed points in time, for example, the time when a digital signal passes from one signal amplitude to another. Jitter occurs especially with high frequencies and can result in data losses. The causes of jitter are noise and crosstalk, interference, signal edge distortion and minimal level fluctuations.

K

L

LAN

A LAN (Local Area Network) usually spans a distance of up to 10 km, although there are networks that can cover much larger distances. It is normally implemented as a diffusion network and achieves transfer rates of up to 10 Gbit/s (10 Gigabit Ethernet). LANs can be wired (like the

standardised local networks Ethernet, Token Ring and FDDI) or wireless (like the WLANs according to 802.11).

LDAP

The LDAP protocol (Lightweight Directory Access Protocol) is a directory access protocol based on TCP/IP (Transmission Control Protocol/Internet Protocol). On the Internet and in intranets, it has become the standard solution for accessing network directory services for databases, e-mail, storage areas and other resources. LDAP offers a uniform standard for DS (Directory Service).

Μ

MAC

The MAC address (Media Access Control) is the hardware address of each individual network adapter, and is used for unique identification of the device in the network. The MAC address is assigned to the data link layer (layer two) of the OSI model. To connect the data link layer with the network layer in the case of Ethernet, for example, the ARP protocol (Address Resolution Protocol) is used.

MIB

A MIB (Management Information Base) is a kind of table, which defines which information can be called up. The MIB of an agent (host, router, access point, etc.) is specified by the manufacturer. The task of this MIB is to store and save the transmitted information and data in the agent. By deploying MIBs, the agents can be monitored and administered using SNMP (Simple Network Management Protocol).

мон

With MoH (Music on Hold), music is played in all common PABX systems whilst a call is on hold.

MPPE

The MPPE protocol (**M**icrosoft **P**oint-to-**P**oint **E**ncryption) is used to encrypt PPTP data packets. For this purpose, the MPPE protocol offers a 40-bit key length (international version) and a 128-bit key length (US version). Data encoding is based on RSA 4 Stream Cipher (RC4). In the case of the 128-bit key, a 64-bit part of the key is changed for each new session to raise

security.

MSN

An MSN (**M**ultiple **S**ubsciber **N**umber) is a feature of Euro ISDN. It is a multiple subscriber number for multi-device access. In an ISDN, any ten free call numbers (maximum) can be allocated from the call number volume of the respective access area for the multi-device access. Each terminal can therefore be assigned an individual call number. An ISDN terminal or a PABX system can also be assigned several call numbers. On the other hand, several devices on the passive bus can be connected via one multiple subscriber number.

MTU

An MTU (**M**aximum **T**ransmission **U**nit) is the largest possible data unit or frame length that can be transmitted via an existing physical transmission medium or via a LAN/WAN path. If larger frame lengths occur, they are either fragmented according to the protocol rules used, or the frame is discarded. WANs generally have smaller MTU sizes than LANs.

Multicast

Multicast is a mode of transmission from a single point to a group. In relation to multicast, one also refers to a multipoint connection. The benefit of multicast is that messages are transferred simultaneously to several subscribers or closed user groups via one address. As well as the multicast connection, there is the point-to-point connection and broadcast transmission.

N

NAT

NAT (Network Address Translation), in computer networks, is a method for replacing an IP address (Internet Protocol) in a data packet with a different one. Often this is used to map private IP addresses to public IP addresses. If the port numbers are also being altered, one refers to masking or PAT (Port Address Translation).

Usually, NAT is performed at a transition between two networks. The NAT service can run on a router or firewall, or on a different specialist device. Therefore, a NAT device with two network adapters can connect the local private network with the Internet, for example. NAT is divided into two

types: Source NAT, which is where the source IP address is replaced, and Destination NAT, where the destination IP address is replaced.

NBTSTAT

Displays NetBIOS over TCP/IP protocol statistics (NetBT), NetBIOS name tables for local and remote computers and the NetBIOS name cache. Nbtstat allows a refresh of the NetBIOS name cache and the names registered in WINS (**W**indows **I**nternet **N**ame **S**ervice).

NI

NI1 is the national ISDN protocol used in the United States for the D channel. Some telecommunication companies still use the older 5ESS protocol. Compared with the European DSS1, NI1 and 5ESS differ primarily in the transmission speed. In both cases, merely data transfers at a speed of 56 kBit/s are possible. The remaining 8 kBit/s are used to transfer the control data, since the two protocols do not support a separate D channel. Furthermore, many of these accesses have only one B channel.

NMBLOOKUP

With nmblookup, NetBIOS names can be queried under Linux using NetBIOS over TCP/IP.

NTP

The NTP protocol (Network Time Protocol) is a standard for synchronising clocks in computer systems over packet-based communication networks. NTP uses the connectionless network protocol UDP (User Datagram Protocol). It was specially developed to allow a reliable time specification over networks with a variable packet runtime.

0

OSI

The OSI reference model (**O**pen **S**ystems **I**nterconnection) is a layer model for the communication of open, information processing systems. It comprises standardised methods and rules for the exchange of data. The OSI model has been developed since 1979 and has been standardised by the ISO. It is used as the basis for a series of manufacturer-independent network protocols, which are used almost exclusively in the transport network in public communication technology.

Ρ

PL

PL (**P**acket **L**oss) occurs during packet-based data transfer in networks. Packet loss can occur in various layers of the OSI model.

PCM

PCM (**P**ulse **C**ode **M**odulation) is an ITU standard for the digitization of voice, which is described in G.711. With this type of modulation, analogue signals are converted to discrete-time and discrete-value binary signals through quantisation.

In voice transmission, the PCM technique is used to convert an analogue voice signal to a digital signal based on Nyquist's sampling theorem. For this, the analogue signal is sampled 8,000 times per second and is converted to an 8-bit number, so that a sample value arises every 125 μ s. The resulting transfer speed is 64 kbit/s, the transferable voice frequency 4 kHz.

For the dynamisation of voice, the ITU within G.711 has defined two methods for the dynamic compression: the μ -law method and the A-law method.

PING

The ping program (**P**acket **I**nternet **G**rouper) can be used to check whether a particular host in an IP network is accessible and what its response time is.

POE

PoE (**P**ower **o**ver **E**thernet) describes a technology, with which networkenabled devices can be supplied with power over the 8-wire Ethernet cable.

POSIX

POSIX (**P**ortable **O**perating **S**ystem **I**nterface for Uni**X**) is a standardised application-level interface jointly developed by the IEEE (**I**nstitute of **E**lectrical and **E**lectronics **E**ngineers) and the Open Group for Unix. It

innovaphone

represents the interface between application and the operating system.

PP

PP (Portable Part) is used as a synonym for a cordless telephone (handset).

PPP

The PPP protocol (**P**oint-to-**P**oint **P**rotocol) is conceived as the protocol for dialling into the Internet over line-switched networks. The PPP protocol allows data transmission over synchronous and asynchronous switched and dedicated lines. Consequently, it is capable of operating independently of the respective physical interface. The only prerequisite for using the PPP protocol is a fully transparent, fully duplex data line.

PPPOE

PPPoE (**P**oint-to-**P**oint **P**rotocol **o**ver **E**thernet) is the use of the PPP network protocol (**P**oint-to-**P**oint **P**rotocol) over an Ethernet connection.

PPTP

The PPTP (**P**oint-to-**P**oint **T**unneling **P**rotocol) is a protocol developed by a vendor consortium (Ascend Communications, Microsoft Corporation, 3Com, inter alia) for the creation of a VPN (**V**irtual **P**rivate **N**etwork). It allows the PPP (**P**oint-to-**P**oint **P**rotocol) to be tunnelled through an IP network; the individual PPP packets, in turn, are encapsulated in GRE packets (**G**eneric **R**outing **E**ncapsulation). To secure the data transfer, PPTP has a 40-bit or 128-bit RC4 algorithm (**R**ivest **C**ipher).

PRI

PRI (**P**rimary **R**ate **I**nterface) is the access provided for medium to large private branch exchanges, and offers much higher transfer speeds compared with the basic access. It allows subscriber equipment to be connected to the ISDN local exchange. A maximum information capacity of 30 basic channels each at 64 kbit/s, as well as a D channel with a capacity of 64 kbit/s are available to the end-user via the S2M interface.

Q

QOS

QoS (Quality of Service) refers to all procedures that influence the data flow in LANs (Local Area Networks) and WANs (Wide Area Networks) so that the

service arrives at the receiver with a defined quality.

QSIG

QSIG (**Q** Interface **Sig**nalling Protocol) is based on the D channel protocol according to the ITU-T standard (**I**nternational **T**elecommunication **U**nion-**T**elecommunications) of the Q.93x series for basic call and of the Q.95x series for the supplementary services. This ensures that QSIG and ISDN are compatible in their features, and that ISDN applications or supplementary services of the public ISDN networks can also be used in a private network.

Q value

An indicator for the transmission quality in a DECT call set up. Also referred to as Q52 value.

Q.931

Q.931 is the protocol standardised by the ITU (International Telecommunication Union) for the signalling in the D channel of Euro ISDN. It is used for the connection setup and shutdown, as well as for connection control.

R

Radio

A DECT radio is either a DECT base station or a repeater.

RC4

The encryption algorithm RC4 (**R**ivest **C**ipher) is a symmetric encryption method, in which the key is generated by a random number generator. RC4 works with a secret key that is know to the sender and receiver. The variable key length can be up to 2,048 bits. Each character is individually encrypted. Despite being relatively simple, RC4 is regarded as very secure.

Repeater

A DECT radio with no direct connection to the CCFP. It requires access (either direct or indirect) to a DECT base station, which provides a channel to the PBX. A repeater increases the coverage area of the IP DECT system, but not the maximum possible number of calls made simultaneously.

A repeater requires a synchronisation source (just like every other DECT radio). The DECT radio used as the synchronisation chain is likewise used to

obtain access to the voice channel of the PBX. This means that calls that go via a repeater are always handled via the repeater sync source.

Repeater chain

If a repeater has another repeater specified as the synchronisation source, one refers to a repeater chain. None of the DECT radios in a repeater chain can be specified as the synchronisation source for an IP1200 DECT radio. For repeater chains, special rules apply.

RFC

Specifications, suggestions, ideas and guidelines concerning the Internet are published in the form of RFCs (\mathbf{R} equest For Comments).

RFP

RFP (Radio Fixed Part) is used as a synonym for DECT base stations.

RJ

RJ connectors have gained market acceptance worldwide for UTP cable (Unshielded Twisted Pair), particularly in workstation cabling and in jumpering. With improved HF transmission properties (High Frequency), RJ connector systems are used both in telecommunications and for networks, including ATM (Asynchronous Transfer Mode) and Gigabit Ethernet (RJ-45). The best-known RJ connectors are RJ-10, RJ-11, RJ-12 and RJ-45, which differ in the number of contacts.

Roaming

The ability of a DECT telephone to operate in more than one IP DECT system (in various locations). For this, the DECT telephone must be registered in all IP DECT systems.

RT

RT (**R**ound **T**rip) is the response time of a complete network. It is the time interval required to send a signal from a source to the receiver over the network and to transport the receiver's reply back to the sender over the network again. The round trip time is used in some routing algorithms to determine the optimum route.

RSA

RSA (**R**ivest **S**hamir **A**dleman) is an asymmetric method or algorithm for encrypting discrete data, which uses various keys for encrypting and

decrypting. Here, the key for decryption is not computable from the key for encryption (or is computable only with considerable effort). The key for encryption can therefore be published. Such methods are referred to as asymmetric or public key methods. It is named after its inventors Ronald L. Rivest, Adi Shamir and Leonard Adleman.

RTP

The RTP protocol (Real-Time Transport Protocol) is a protocol for the continuous transmission of audiovisual data (streams) over IP-based networks. It is used to transport multimedia data streams (audio, video, text, etc.) over networks, that is, to encode, packet and send the data. RTP is a packet-based protocol and is normally operated via UDP. RTP is used for the negotiation and observance of QoS parameters (Quality Of Service). It is applied in many areas, for example, it is used in the IP telephony technologies H.323 and SIP (Session Initiation Protocol) to transfer the audio/video streams of the call.

5

SC

A telephone call is made up, for the most part, of pauses. It would be unnecessary to operate at the full data rate in these time slots. Codecs, such as the G.723.1 or the G.729, therefore contain an SC feature (**S**ilence **C**ompression). Essentially, this feature consists of three components: VAD, DTX and CNF.

The task of VAD (**V**oice **A**ctivity **D**etector) is to determine when a subscriber is speaking and when he/she is silent. For this, the algorithm must respond quickly to prevent the first syllable being lost after such a silence. To reliably differentiate between conversation and silence, the codec requires a buffer which causes an additional delay.

DTX (**D**iscontinuous **T**ransmission) allows a codec, in theory, to interrupt the connection if VAD has detected silence. Because an interruption of this kind would mean absolute silence on the call party side, the connection is not really completely interrupted. Rather a small set of data is transferred, which allows the generation of background noise on the receiver side.

CFG (**C**omfort **N**oise **G**enerator) starts precisely at this point. It is capable of generating background noise independently. For this, it uses the background

noise that existed for the previous conversation phase.

SNTP

The SNTP protocol (**S**imple **N**etwork **T**ime **P**rotocol) is used for the transmission of an official time in networks and in the Internet. The extended variant is called NTP (**N**etwork **T**ime **P**rotocol).

SNMP

The **S**imple **N**etwork **M**anagement **P**rotocol allows central network management for many network components. The primary objectives of SNMP are a reduction in the complexity of the management functions, the extensibility of the protocol and independence of any network components.

Synchronisation

For DECT radios to be able to communicate, they must be synchronised with one another. In an IP1500 system, synchronisation is obtained using the 2wire interface of the CCFP. In an IP1200 system, it is obtained via the air, however. Therefore, an IP1200 configured as a DECT radio must be created within the coverage of another DECT radio, from which synchronisation can be obtained.

In an IP1500 system, only the repeaters must be created within the coverage of a DECT radio. Of course, this also applies in an IP1200 system.

Synchronisation chain

In a closed system, every IP1200 DECT radio must be synchronised with all other IP1200 DECT radios. This presupposes that every DECT radio (apart from one) has a different one configured as the synchronisation source.

The one DECT radio that does not obtain its synchronisation from another DECT radio is called the "sync master". It must be an IP1200 and must not be a repeater. All other DECT radios obtain their synchronisation from this DECT radio either directly or indirectly.

The name of the field for entering the synchronisation source ("Sync Master") is actually wrong: it is not the radio ID of the sync master that is entered here, but the radio ID of the radio from which synchronisation is to be obtained. One could also say the next DECT radio in the synchronisation chain.

For redundancy, an "Alt sync master" can be configured. This is used as the synchronisation source if the DECT radio configured as the "Sync master" is

not available.

Obviously, no circles must exist in the synchronisation chain.

A repeater likewise requires a synchronisation source. It must not be configured with an alternative synchronisation source however, since the latter serves as a synchronisation source only in the event of failure of the sync master. Therefore, no repeater should be used as the synchronisation source for an IP1200 DECT radio.

Similarly, no repeater should be used as the synchronisation source in a repeater chain.

Sync master

The DECT radio in an IP1200 installation that does not obtain its synchronisation from another source.

Is also used in the IP1200 DECT radio configuration to configure the sync source of the DECT radios.

Sync source

A DECT radio which serves as the synchronisation source for other DECT radios.

T

ТСР

The TCP protocol (**T**ransmission **C**ontrol **P**rotocol) is a connection-oriented transport protocol for use in packet-switched networks. The protocol builds on the IP protocol; it supports the functions of the transport layer and establishes a secure connection between the entities before data transfer.

Telnet

Telnet (**Tel**etype **Net**work) is the name of a network protocol that is widely used in the Internet. The purpose of the Telnet protocol is to offer fairly general, bidirectional, 8-bit-per-byte-oriented communication. It is usually used to offer users access to Internet computers via the command line. Here, the Telnet program provides the required client functions of the protocol. However, because there is no encryption, it is hardly used any

innovaphone

more.

TFTP

The TFTP protocol (**T**rivial **F**ile **T**ransfer **P**rotocol) is a very simple file transfer protocol. TFTP supports merely the reading or writing of files. Many functions of the more powerful FTP (**F**ile **T**ransfer **P**rotocol), such as rights allocation using chmod, displaying existing files or user authentication, are not available. Unlike FTP, which requires a connection-oriented transport protocol, TFTP is normally operated via a connectionless protocol like UDP.

TOS

The ToS field (**T**ype **O**f **S**ervice field) is a data field in the IP header, in which the services of the datagram are defined. With the ToS information, computers can specify network-relevant types of service. Here, various parameters, such as the bandwidth, the transfer speed or the reliability of the transfer can be defined. Furthermore, the priority handling of datagrams, the type of throughput and the reservation of resources in the routers can be defined.

Trace

A trace is a sequence of instructions, which begins with any start point and in which the program branches and their path selection are defined. It allows the program flow to be traced step by step. A trace is primarily used in troubleshooting and debugging.

U

UDP

Unlike the connection-oriented TCP (Transmission Control Protocol), the User Datagram Protocol is a minimal, connectionless network protocol that belongs to the transport layer of the Internet protocol family. The task of UDP is to send data transferred over the Internet to the correct application. With UDP, a protocol was required that was responsible only for the addressing without securing the data transfer, since this would result in delays in the voice transmission.

URL

Uniform Resource Locator refers to a subtype of Uniform Resource Identifiers (URI). URLs identify a resource via its primary access mechanism

(often http or ftp) and the location of the resource in computer networks. The name of the URI schema is therefore normally derived from the network protocol used for this. Examples here are HTTP or FTP.

UTC

UTC (**U**niversal **T**ime **C**oordinated) is the current (coordinated) world time, replacing in this function GMT time (**G**reenwich **M**ean **T**ime). It is a combination of the international atomic time TAI (**T**empus **A**tomique **I**nternational) and the UT (**U**niversal **T**ime). The time zones are specified as a positive or negative time difference from UTC (for example, UTC+2 corresponds to MEST). UTC combines the physical atomic time (TA) with the astronomical time (UT), and is also called civil time.

µ-law

The μ -law method is a digitization method for analogue audio signals, which is standardised in the G.711 recommendation of the ITU (**I**nternational **T**elecommunication **U**nion). Like the A-law method, the μ -law method uses a logarithmic quantisation characteristic curve to achieve a better signal-tonoise ratio. With this method, 8-bit values are likewise generated. However, the quantisation characteristic curve for low levels is steeper. In addition, the encoding is not designed to generate continuous sequences of 0s, but continually changing bit states. In this way, a particular method for timing recovery on the side of the receiver of the digital signal is simplified. The μ law method is used by the PCM technique in North America and Japan.

V

VLAN

VLANs (Virtual Local Area Network) are a technological concept for implementing logical workgroups within a network. This kind of network is implemented using LAN switching or virtual routing on the data link layer or on the network layer. Virtual networks are set up through a number of switching hubs, which are connected together through a backbone.

VPN

The term VPN (**V**irtual **P**rivate **N**etwork) is used with different meanings. Very generally, one refers to a VPN if customer-specific, logical subnetworks are being created within a public switched network. They may be networks for voice communication, or X.25, Frame Relay or ISDN networks. The usual interpretation of VPNs today is the IP VPNs, where the subscribers are connected via IP tunnels.

W

WAN

WANs (Wide Area Network) are conceived for voice or data transmission over wide areas. These networks are installed nationwide in all industrial countries, and can be used without restriction for business and private communication. Such networks are conceived keeping in mind the service offering. Therefore, the classical analogue telephone network (POTS), just like ISDN, is suitable for telephony. The public data packet networks, on the other hand, were conceived for data transmission services. ATM, Frame Relay and Fast Packet Switching are also worth naming in this connection.

WINS

WINS (**W**indows Internet Naming Service) is a method for converting computer names in Windows networks to IP addresses. The WINS method takes into account that two computers with the same name or the same IP address are never logged into the network.

With WINS, which uses the UDP protocol for transmission, the started client logs on to the WINS server with its NetBIOS name and the IP address. The latter checks whether the addresses are not already in use and enters them in the address database of the WINS server. When a client logs off, the address is released again and can be reassigned.

WRFP

WRFP (Wireless Radio Fixed Part) is used as a synonym for repeater.

Keyword index

Symbols

+ 78 µ-law 137

Numerics

0db 44 0x10 23, 35, 102 10 MBit Full Duplex 31 10 MBit Half Duplex 31 100 MBit Full Duplex 31 100 MBit Half Duplex 31 100 Ohm Termination 42 100-240V 4 100m-fdx 31 100m-hdx 31 10m-fdx 31 10m-hdx 31 128-Bit Encryption 28 15db 44 2nd Called Party Number 29 2nd Local Subscriber Number 29 40-Bit Encryption 28 50Hz 4 5ESS 122 7.5db 44 802.1p 37 802.1g 37 802.3af 4, 11

A

a/b LIC 16 AB 71 Abbreviated 78 ABs 71 AC (Access Code) 54 Account 76 Acknowledged 37 Action 17 Active Calls 25 Adapt to Cisco PPP peers 27 Add 41 Add # 86 Add UUI 85 Address 51, 60, 87, 88 Address Ranges 34 Administrator access 11, 16 Administrator name 16 Administrator password 16 Administrator user ID 19 Alarms 47 A-law 117 Alert 64 Alerting 66, 88 Alias List 81 Allow inbound connections 26Allowed networks 22 Alt sync master 117 Alternate Master 49 AM/PM Clock 36 Announcement URL 55, 60 Announcements 20 Answerphone 63 Apache server 108 Area Code 72 ART 117 ARP 117 As-shipped state 12, 32 Authentication 27

Authentication trap 22 Authorization 80 Auto 31 Auto dial after boot 26 Automatic 32 Automatic CGPN Mapping 66, 85 Auto-MDX 11, 117 Autonegation 31

В

Bandwidth 26, 59 Basic LIC 16 Billing CDRs only 67 Boolean 50, 51, 52, 54 Boolean Object 54 Boolean object 51 Boot code 107, 112 Boot code firmware 91 Boot code version 15, 91, 112 Boot command 112 Boot File 91 Boss/secretary function 57 BRI 70, 118 BRI LIC 16 BRI1-4 72, 76 BRI1-x 92 Broadcast 52, 56, 118 Built number 111 Busy 54, 61 Busy on n Call(s) 54

С

Call Broadcast Object 56 Call Busy Endpoints 59 Call Completion 70 Call Counter max 86 Call detail records 67, 87 Call direction 82 Call Executive 58 Call filter 50 Call Logging 66 Call routing 82 Call switching 82 Called Party Number 29 Calling 66, 88 Calling Party Number 29 Calls 65, 88 Call-Waiting On 69 Cancel 70 CAS 43 CAS method 43 Cause (DISC) 84 CCFP 118 CDPN In 71, 78, 79 CDPN Out 71, 78, 79 CDR 67, 87, 88, 119 CDR server 87 CDR type 87 CDR0 87 CDR1 87 CEST 115 CET 115 CF 52 CFB 57, 119 CFB Activate 67 CFNR 57, 119 CFNR Activate 67 CFNR Timeout 53 CFNR Timer 49 CFU 57, 119

CEU Activate 67 CGPN 83 CGPN In 71, 78, 79 CGPN map 83 CGPN Maps 83 CGPN Out 71, 78, 79 Channel Associated Signalling 43 Channels 71 Check command 109 сні 119 Class 21, 87 Cleanup 38 Clear All Leases 38 Clear Dynamic Leases 38 Clear Local Settings 69 Clear Reserved Leases 38 Client 31 Clock master 42 Clock Mode 42 Clock slave 42 Coder 15, 35, 59, 65, 73, 88 Coder Preferences 72 Cold start 15 Collision 38 Command File URL 18 Community name 22 Config Changes 92 Config Show 94 Configuration 15 Configuration file 89, 90 Configuration of the update server 116 Configuration of the VoIP device 89Connect message 43

Connected 66, 88 Connection Port 25 Connections 40 Connectors and control elements 96 Contact 22 Coordinated world time 114 CR 119 CRC4 Errors 47 Crossover cable 11 CTI 119 Current 50

D

Datasheet 107 D-Channel 47 Deactivate 67 DECT 52, 54, 120 DECT base station 120 DECT controller 120 DECT handset registration 54 DECT master 41.92 DECT radio 41, 92 DECT system 120 DECT System Object 56 Default forward destination 24 Default Gateway 32, 35 Default router 30 Del 41 Delav 73 Description 83 Descriptive Name 25 Dest. No 60 Destination host 94 Destination interface 82, 83, 84 Destination Network 30

Device configuration 112Device Name 16 Device name 16, 22 DHCP 120 DHCP Automatic mode 11, 12, 32 DHCP client 31, 32 DHCP Client mode 31 DHCP Disabled mode 32 DHCP function 31 DHCP lease 34, 37, 38 DHCP server 11, 12, 31, 34, 37 DHCP Server mode 31 **Diagnostics** 91 Dial tone 35 Dial Tones 35 Dialled digits 85 Dialling Location 36 Digest hash authentication 19 Dir 65 Direct Call 58 Direct Dial 75, 76 Directed 69 Disable 71, 76, 79 Disable Echo Canceller 86 Disable HTTP basic authentication 19 Disabled 31 DISC 84 Disconnecting 66, 88 Disconnection cause 84 Display 54 Display Name (secondary) 76 Disposal 4 Diversion Filter 53

DMS100 120 DNS 120 DNS server 32, 35 DNS Server 1 35 DNS Server 2 35 Do not Disturb Ext. On 69 Do not Disturb Int. On 68 Do not Disturb On 68 Do not use for synchronisation 43Down 30, 31, 41, 71 Download 89 DSI 121 DSL provider 27 **DSP** 71 DSP LTC 16 Dst 115 DTMF 55 DTMF | Dest. No | Dest. Name 65 DTMF Features Object 57 DTMF-Ctrl 52 Dvnamic 37 Dynamic Group 75, 76

E

E.164 81, 121 E.164 call number 81 Echo cancellation 86 E-DSS1 121 Enable 25, 41, 67 Enable External Transfer 49 Enable H.323 NAT 25 Enable MPPE Encryption 28 Enable NAT 24 Enable PCM 73 Enable T.38 73

Enable Telnet 22 en-bloc dialling 36, 85 Enblock Count 58 Enblock Dialling Timeout 36 ENUM 80, 121 ETHO 12, 30, 31 ETH1 12, 30, 31, 96 Ethernet interface 31, 33 ETHn 33 Exclude Address 33 Exclude from Auto CGPN 66, 85 Exclude interface from NAT 26 Exclude Mask 33 Exclusive 73 Execute Group Member Diversions 56 Executive 52, 57 Expires 37 External Music On Hold 48 External Name/No 55, 60, 64

F

Facility 81 False state 54 Faststart 36 Fax machine 73 Fax-over-IP protocol 73 Feature Codes 67, 74 Features 74 Filter 52, 53 Filter examples 50 Filter name 50 Final Map 85 Final Route 85 Firewall 100

Firmware 90 Firmware download 110 Firmware update 107, 111 Firmware upload 107 Firmware version 90, 107, 111 First Address 34 First UDP NAT port / numbers of port 23 First UDP RTP port / numbers of port 23 Force Enblock 85 Frame 73 From 83 FTP 122 FTY 81, 122 Full Replication 41 G G711A 59, 73 G711u 59, 73 G723 59

Gatekeeper Address (primary) 74,

Gatekeeper Address (secondary) 74,

Gatekeeper Discovery 80

Gatekeeper ID 35, 66, 74, 80

Gatekeeper IP address 35, 74, 80

Gatekeeper Identifier 48, 80

Gatekeeper Identifier * 35

Gatekeeper licence 66, 70

G723-53 73

G726-32 73

G729 59

G729A 73

80

80

Gatekeeper 35

Gatekeeper/Registrar 80 Gatekeeper6 70 Gateway 29, 30, 33, 52, 54, 66, 70 Gateway configuration 66 Gateway licence 70 Gateway setting 66 Gateway without Registration 80General 15 General information 15 Global IP address filters 51 GMT 114, 123 Group Indications 54 Group-Join 70 Groups 52 GSM features 57 GW1-12 82 GWI oad 95

Η

H 123 H.225 123 H.225 signalling destination 25 H.225/RAS destination 25 H.245 124 H.245 tunneling 36, 81 H.323 81, 123 H.323 authentication 25 H.323 Faststart 36 H.323 firewalling 101 H.323 Interop Tweaks 81 H.323 name 81 H.323 name 81 H.323 registration 74, 92 H.323 terminal 48

H.3245 faststart 81 Handover 123 Handset 123 Hardware ID 53 Hardware version 15 HDLC 15 Hexadecimal number 15 High Layer Compatibility 81 HLC 81, 123 Host name 37 Hot fix 107 HTTP 20, 21, 77, 78, 88 HTTP client 20 HTTP GET 21, 88, 108 HTTP port 19 HTTP PUT 108, 112 HTTP server 19, 59, 63 HTTP session 108

I

ID 34 ID @ 76 Idle Reset 95 IEEE 4, 11, 124 IEEE POSIX standard 19, 35, 114 Immediate reset 91 In-band signalling 43 Inbound Connections 29 Inbound Password 27 Inbound User 27 Include Interface in NAT 33 Incomplete 61 Indicators and connectors 96 Initial start-up 11 innovaphone AG 4

innovaphone dealer 22, 90, 91 innovaphone GWLoad 95 innovaphone homepage 22, 107innovaphone knowledgebase 95innovaphone news 107 innovaphone PBX 40, 48, 50innovaphone PBX licence 47 Insert Route below 83 Installation and connection 4 Interface 30, 71, 79, 88 Interface Maps 72 Interleaving 103 International 78 International Prefix 72 Interworking (OSIG) 85 Introduction 10 Invalid 61 TP 124 IP Address 32, 34, 37 IP Address for Remote Party 26 IP address range 22 IP configuration 31 IP DECT handset 54 **IP** Filter 51 IP master 124 IP parameters 31 IP protocol 22 IP Routes 29 IP Routing 35 IP settings 23 IPEI 54, 124 IPxxx 14 ISDN 28, 30, 79, 125 ISDN error code 84

ISDN interface 42, 66, 82 ISDN network 43 ISDN TEL interface 42 ISDN U law standard 43 ITU 125

J

Jitter 65, 88, 125

L

LAN 125 Language 36 Last Address 34 Last sync 19 LDAP 126 LDAP clients 40 LDAP configuration 36 LDAP database 39, 40LDAP Directory 36 LDAP replicator 39 LDAP server 39, 40, 41 LDAP user 41 LDAP user name 40 LDAP user password 40Least cost routing 77 Leave 70 Licence type 17 Licences 16, 49, 70 Limit 50 Link Configuration 28 Link type 28 Local 30, 41, 53 Local flag 53 Local Subscriber Number 29 Location 22, 41, 52 Locked White List 75, 76

Log message 21, 88, 91 Log type 20 Logging 20, 91 Long Name 51, 53 Loopback 44, 61 Loss 88 Lost Frame Alignments 47 Lost Signals 47

Μ

MAC address 15, 37, 98, 126 Maintenance commands 109 Maintenance file 109, 110, 111 Malfunctions 4 Manual 107 Manual override 55 Map 52 Map entry 82, 83, 84, 85, 86 Mask 51, 60, 80 Master 49 Master PBX 41 Max Call/Operator (%) 64 Maximum transfer unit 26 MCast Announcement 58 Media 65 Media Access Control 15 Media relay 24 Memory size 15 MES 115 Message class 21, 87 Message Waiting 52, 59 MET 115 MIB 22, 126 Check Interval 34 Interval 18, 19

Lease Time 34 Mode 80 Model 73 Modify 41 МоН 20, 126 MPPE 28, 126 MS IIS 108 MSN 127 MSN1-3 / Ext. 72 мти 127 MTU size 102 Multicast 33, 52, 58, 127 Multicast Address 58 Multicast address 80 Multicast Port 59 Music On Hold URL 48

Ν

Name 17, 50, 51, 53, 65, 71, 74, 76, 79, 81 Name In 86 Name Out 84 NAT 24, 26, 33, 100, 127 NAT mode 102 National 78 National Prefix 72 Nbtstat 11, 128 Network Address 29 Network Address Translation 33 Network Destination 33 Network Mask 29, 30, 32, 33, 34 Network routes 33 Network Time Protocol 15 Network-specific 78 New 52

Newsletter 107 Next (ok/nok/filter) 50 NI 128 Nmblookup 12, 128 No 52 No Answer Timeout 61 No CRC4 43 No DNS on this interface 26No Faststart 81 No H.245 Tunnelina 81 No IP Header compression 27 No Reply from 95 No. of Reas w/o Pwd 49Node 52, 53 Nok 50 Not 50 Notify 41 NT Mode 42 NT mode 43 NTP 128 NTP server 15, 18, 43, 114 NTP software packages 114 Number 50, 53, 65, 74, 81, 88 Number In 84, 86 Number Map 60Number Map Object 60 Number Out 84, 86

0

Object type 52 Off 20, 68, 69, 87 Offer Parameters 34 Offset 115 Ok 50 Operating modes 31 Operating state 22, 91 Operating temperature 4 Operating time 15 Operator licence 49 Operators 49 OSI 128 Outbound Connections 29 Outbound Dassword 27 Outbound User 27 Outbound User 27 Outgoing Calls CGPN 62 Outgoing Calls restricted 62 Overhead 73

Ρ

Packet loss 65 Packetization 59 Park 70 Park To 70 Password 16, 20, 40, 49, 50 Password / Retype 53, 74, 76, 80 Password protect all HTTP pages 19 Path 88 PBX 52, 53 PBX access numbers 36 PBX basic licence 49 PBX basic licence upgrade 49 PBX LIC 16 PBX licence 49 PBX master 49 PBX Mode 48 PBX Name 48 PBX Object 60 PBX object: Boolean 54 PBX object: Call Broadcast 56 PBX object: DECT System 56

PBX object: DTMF Features 57 PBX object: Executive 57 PBX object: Gateway 58 PBX object: MCast Announce 58 PBX object: Message Waiting 59 PBX object: Number Map 60PBX object: PBX 53, 60 PBX object: Trunk Line 61 PBX object: User 54 PBX object: Voicemail 63 PBX object: Waiting Queue 63 PBX password 50 PBX6#100 49 PCM 129 Pendina 41 Permanent Activation 43 Pickup Group 49 Pickup Prefix 49 Pickup-Group 69 PIN 54 Ping 94, 129 PL 129 Poe 4, 11, 129 Point-to-Point 72 Poll direction 41 Popup page 52, 71, 78, 79, 83, 89 Port 19, 87 Port-specific Forwardings 24 POSIX 129 POSIX timezone strings 114 Power over Ethernet 4, 11 Power supply 4, 11 PP 130

PPP 25, 72, 76, 92, 130 PPP connection 26 PPP interface 32 PPP Interface PPPn 25 PPP0-31 30 PPPoE 27, 130 PPTP 27, 130 Prefix 58 PRI 70, 130 PRI LIC 16 PRI1-4 72, 76 PRI1-x 92 Primary 58, 64 Primary Gatekeeper 35 Primary Group 65 Prioritisation 34, 37, 102 Priority 34 Private 79 Private networks 24 Product 109 Prot command 111 Protected areas 14 Protocol 65, 79, 88 Protocol firmware 91 Protocol overhead 59 Proxy ARP 32 Public 22 Push direction 41 Q O value 131 Q0.931 131 QoS 37, 130

QoS 37, 130 QSIG 131 Quality of service 37 Queue 63

R

Radio 131 Radio File 90 RAS protocol 101 RC4 131 Read 108 Ready 97 Ready LED 11 Recall Timer 49 Receive line 42 reference 94 Reference configurations 94 Register as Endpoint 80Register as Gateway 80 Registered Clients 25 Registration 49, 71, 72, 73, 77, 79 Registration licence 49 Registration modes 80 Registrations 50 Registrierung 71 Relay Calls 92 Relay Off 44 Relay Routing 92 Remote 41 Remote Alarms 47 Repeater 131 Repeater chain 132 Replication connections 40 Replicator status 41 Reply from 95 Require authentication 25Reroute supported 61

Reserve IP Address 37 Reserved 37 Reset 90, 91, 95, 97 Reset button 32 Reset required 14 Reset when idle 91 Restart 32 Retype 50 RFC 132 **RFP** 132 rj 132 R145 11 Roaming 132 Round Robin 64 Round Robin Timeout 56 Round Robin Timer 56 Round trip 65, 88 Route 30, 82 Route definition 85 Route External Calls to 49 Route Logaina 66 Route setting 83 Route to Interface 28 Routing table 82 **RRT 56** RSA 132 RT 132 RTP 133 Running maintenance 109 Rx 38 Rx-abandon 40 Rx-add 40 Rx-align-err 39 Rx-broadcast 38

Rx-collision 39 Rx-crc-err 39 Rx-del 40 Rx-errors 47 Rx-good 38, 47 Rx-modify 40 Rx-multicast 39 Rx-no-buffer 39 Rx-overrun-err 39 Rx-queue-overrun 39 Rx-search 40 Rx-too-long 39 Rx-too-short 39 Rx-tx-1024 39 Rx-tx-128-255 39 Rx-tx-256-511 39 Rx-tx-512-1023 39 Rx-tx-64 39 Rx-tx-64-127 39 Rx-unicast 38

S

Save Frame As 94 Saving the settings 14 SC 73, 133 SCFG command 112 Script URL 63 Secondary 58 Secondary Gatekeeper 35 Selective direct outward dialling 85 Send flags on FDL 44 Serial number 15, 98 Server 19, 31, 41 Server Address 28 Server Address (primary) 75

Server Address (secondary) 75 Server status 40 Service packs 107 Set Calling = Diverting No 62Show 51 Signalling channel 85 Silence compression 73 Simple Network Time Protocol 15 SIP interfaces 76 SIP provider 75 SIP registration 75 SIP registrations 92 SIP1-4 76 Slave 41 Slave mode 49 Slave PBX 49 Slips 47 SNMP 22, 134 SNMP agents 22 SNTP 15, 134 SNTP server 15 Software version 15 SoftwarePhone licence 49SoftwarePhones 49 Source interface 82, 83 Standard authentication 19 Standard community name 22 Standard configuration 111 Standard file name 109 Standard firmware file name 111 Standard MIB II 22 Standard router 32 Standard settings 110, 111 Standard user name 14

Standard user password 14 Standby mode 49 Standby PBX 41, 49 Starting 41 State 30, 47, 66, 71, 88 Stateless Operation 28 Static IP routes 33, 35 Statistics 38 Status 25, 31 Std 115 StdOffset 115 Stop 41 Storage temperature 4 String 19 STUN Server 75 Subaddress 82 Subscriber 78 Subscriber Number 72 Summer time 114 Summer time zone 115 Supplementary Services 67, 74, 76 Supply Inline Power 42 Support 107 Suppress FTY 81 Suppress HLC 81 Suppress Subaddress 82 Swap tx/rx 42 Svnc 15 Sync master 135 Sync source 135 Synchronisation 19, 114, 134 Synchronisation chain 134 Syslog 21, 87, 91 Syslog daemon 21, 87

Syslog entries 21 Syslog information 66 Syslog recipient 21, 87 Syslog server 21, 35, 87 Syslogd 21, 87 Sysload server 87 System Name 48 т т.3873 T1 43 T1 mode 44 TCP 21, 87, 92, 135 TCP connection 21, 87 TE mode 42, 43 **TEL1 82** TEL1-4 72, 76 TEL1-x 92 TEL2 82 Telnet 135 Telnet protocol 22 Telnet session 109 TEST 77 **TFTP 136** TETP mode 95 TETP Reset 95 TFTP server 35 TFTP-Mode 97 Time 15 Time command 110 Time condition 55 Time format 36 Time Server 35 Time server 19, 35, 114 Time service 114

Time stamp 43 Time zone 15, 19, 35 Timezone 19 Timezone string 35, 114 To 83 TONE 77 Tones 71, 77 то5 23, 35, 102, 136 ToS Priority 23, 35, 102 Trace 63, 136 Trace (buffer) 92 Trace (continuous) 92 Trace information 63, 92 Trace variants 93 Transmission mode 31 Transmission speed 31 Transmit line 42 Trap 22 Trap destinations 22 Trap messages 22 Troubleshooting 99, 100 True state 54 Trunk Line 52 Trunk line 61 Trunk Line Object 61 Trunk Point-to-Multipoint 72 Tunnelina 36 Twisted pair cable 11 Tx 38 Tx level for T1 mode 44 Tx-broadcast 38 Tx-collision 38 Tx-deferred 38 Tx-error 40

Tx-error-49 40 Tx-error-50 40 Tx-excesscol 38 Tx-good 38, 47 Tx-latecol 38 Tx-lostcarrier 38 Tx-multicast 38 Tx-notify 40 Tx-unicast 38 Type 17, 37, 52 Type of Service 23, 35, 102 TZ string 114 **U** UDP 136

UDP NAT 23 UDP RTP 23 Universal Time Coordinated 114 Unknown 78 Unknown Registrations 48 Unpark 70 Unpark From 70 Up 30, 31, 41, 71 Update file 109 Update Interval 36 Update script 18 Update server 18, 36, 37, 108, 109 Update Server URL 37 Upload 89, 90, 91 Uptime 15 **URI** 76 URL 18, 20, 37, 48, 88, 109, 111, 136 URL parameter 108

User 20 User & Password 41 User database 40 User interface 13 User Name 16 User Object 54 Username 40 UTC 114. 137 v Verifv CGPN 85 Version 15 Version details 107 Virtual interfaces 77 Virtual Local Area Network 33 VLAN 33, 137 VLAN ID 34, 37 VLAN priority 37 voice 15 Voice channels 15 Voicemail 20, 52, 63 Voicemail LIC 16 Voicemail Object 63 Voicemail script file 63

Equipment 4 Web server 21, 88, 108 WEEE guidelines 4 Weekday +Time Specification 55 Windows server 114 WINS 138 WINS server 35 Winter time 114 World time 114 WRFP 138 Write 108 Write Access 40 Write connections 40

X

XPARENT 73

W

VoIP gatekeeper 35 VoIP interface 82 VPN 27, 137

Waiting Queue 52 Waiting Queue Object 63WAN 138 WAN connection 32 WAN links 102 Warm start 15 Waste Electrical and Electronic

innovaphone® AG Böblinger Straße 76 D-71065 Sindelfingen

Fax: +49 (70 31) 7 30 09-0 Fax: +49 (70 31) 7 30 09-99

www.innovaphone.com info@innovaphone.com